{"created":"2023-05-15T12:25:59.788364+00:00","id":18678,"links":{},"metadata":{"_buckets":{"deposit":"d13667c6-8f83-4889-af02-5798c84ab24a"},"_deposit":{"created_by":1,"id":"18678","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"18678"},"status":"published"},"_oai":{"id":"oai:kansai-u.repo.nii.ac.jp:00018678","sets":["528:1385:1386:2512"]},"author_link":["44245","44246"],"item_10_alternative_title_20":{"attribute_name":"その他のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"A study of generalized Procrustes problem : Confirmatory linkage between factor analysis and multidimensional scalings"}]},"item_10_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1986-11-04","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"183","bibliographicPageStart":"153","bibliographicVolumeNumber":"18","bibliographic_titles":[{"bibliographic_title":"関西大学社会学部紀要"}]}]},"item_10_description_4":{"attribute_name":"概要","attribute_value_mlt":[{"subitem_description":"因子分析法や多次元尺度法のような2種の異なる多変量解析法の解を比較し,合致させるための一般的な方法が,数学的な公式とフォートランプログラムによる分析を通して討論され,開発された。ユークリッド空間内での座標空間全体としての拡張・短縮と原点の移動をともなう軸の回転を採用したSchönemannとCarrollの一般化プロクラステス法が,本稿では,実質科学者の理解を深める目的で,直交射影子行列による幾何学的説明によって再解釈され,また,日本の高校生の2つの異なる標本から得られたYG性格検査の数値例によって再解釈された。数値例研究の結果は,2つの異なる標本で,かつ異なる解の多次元構造,すなわち固定された因子軸上での斜交プロマックス因子解とADDSCAL解の間の一致を評価する指標によれば,高水準のはっきりした合致を示している。","subitem_description_type":"Other"},{"subitem_description":"A generalized method for comparing and matching two kinds of different solutions of multivariate analysis such as in factor analysis and in multidimensional scaling was discussed and developed with mathematical formulations and also with Fortran programs. Generalized Procrustes analysis proposed by Schöneomann and Carroll in which a rotation of axes as well as a central dilation and a translation within Enclidian space was adopted was reinterpreted geometrically in terms of orthogonal projection matrix for substantial scientists to understand it easier by using numerical examples of YG Personality Inventory obtained from two different samples of Japanease highschool students. Results indicate the clear matching of high level in terms of indexes for evaluating the congruence of the multidimensional structures of both two different sample and also of two different solutions : between oblique Promax factor analytic solution and ADDSCAL solution with constrained factor axes. (author abstract)","subitem_description_type":"Other"}]},"item_10_description_5":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"創立百周年記念特輯","subitem_description_type":"Other"}]},"item_10_full_name_3":{"attribute_name":"著者別名","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"44246","nameIdentifierScheme":"WEKO"}],"names":[{"name":"Shibata, Mitsuru"}]}]},"item_10_publisher_34":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"関西大学社会学部"}]},"item_10_source_id_10":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00046982","subitem_source_identifier_type":"NCID"}]},"item_10_source_id_8":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"02876817","subitem_source_identifier_type":"ISSN"}]},"item_10_version_type_17":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"柴田, 満"}],"nameIdentifiers":[{"nameIdentifier":"44245","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"20178908","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://nrid.nii.ac.jp/ja/nrid/1000020178908"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2021-03-08"}],"displaytype":"detail","filename":"KU-1100-19861104-09.pdf","filesize":[{"value":"2.8 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"KU-1100-19861104-09.pdf","url":"https://kansai-u.repo.nii.ac.jp/record/18678/files/KU-1100-19861104-09.pdf"},"version_id":"c42615b1-c04f-4f72-94e0-5391ac986bfe"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"因子分析法","subitem_subject_scheme":"Other"},{"subitem_subject":"多次元尺度法","subitem_subject_scheme":"Other"},{"subitem_subject":"プロクラステス法","subitem_subject_scheme":"Other"},{"subitem_subject":"因子軸の固定","subitem_subject_scheme":"Other"},{"subitem_subject":"フォートラン・プログラム","subitem_subject_scheme":"Other"},{"subitem_subject":"YG性格検査","subitem_subject_scheme":"Other"},{"subitem_subject":"factor analysis","subitem_subject_scheme":"Other"},{"subitem_subject":"multidimensional scaling","subitem_subject_scheme":"Other"},{"subitem_subject":"Procrustes analysis","subitem_subject_scheme":"Other"},{"subitem_subject":"constraint of factor axes","subitem_subject_scheme":"Other"},{"subitem_subject":"Fortran program","subitem_subject_scheme":"Other"},{"subitem_subject":"YG personality Inventory","subitem_subject_scheme":"Other"},{"subitem_subject":"関西大学","subitem_subject_scheme":"Other"},{"subitem_subject":"Kansai University","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"一般化プロクラステス問題の研究 : 因子分析法と多次元尺度法の確認的結合","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"一般化プロクラステス問題の研究 : 因子分析法と多次元尺度法の確認的結合"}]},"item_type_id":"10","owner":"1","path":["2512"],"pubdate":{"attribute_name":"公開日","attribute_value":"2021-03-08"},"publish_date":"2021-03-08","publish_status":"0","recid":"18678","relation_version_is_last":true,"title":["一般化プロクラステス問題の研究 : 因子分析法と多次元尺度法の確認的結合"],"weko_creator_id":"1","weko_shared_id":1},"updated":"2023-05-15T20:40:13.588801+00:00"}