WEKO3
アイテム
Elementary Proof of Schweitzer's Theorem on Hilbert C*-Modules in which All Closed Submodules are Orthogonally Closed
http://hdl.handle.net/10112/11821
http://hdl.handle.net/10112/11821eaa0ac98-bed1-4c70-8f47-76e255cf4387
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2018-01-26 | |||||
タイトル | ||||||
タイトル | Elementary Proof of Schweitzer's Theorem on Hilbert C*-Modules in which All Closed Submodules are Orthogonally Closed | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
著者 |
楠田, 雅治
× 楠田, 雅治 |
|||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 28149 | |||||
姓名 | 楠田, 雅治 | |||||
概要 | ||||||
内容記述タイプ | Other | |||||
内容記述 | Let A and B be C*-algebras and let X be an A-B-imprimitivity bimodule. Schweitzer showed the theorem that if every closed right B-submodule of X is orthogonally closed, then there are families {H_i}_<iEI>, {K_i}_<iEI> of Hilbert spaces such that A (resp. B) is isomorphic to the C_0-direct sum Σ^*_<iEI>C(H_i) of all compact operators C(H_i) on H_I (resp. Σ^*_<iEI>C(K_i) of all compact operators C(K_i) on K_i) as a C^*-algebra, and X is isomorphic to the C_0-direct sum Σ^*_<iEI>C(K_i, H_i) as a Hilbert C^*-module, where C(K_i,H_i) denotes the Hilbert C^*-module consisting of all compact operators from K_i into H_i. In this paper, we give an alternative proof, of this theorem, which is shorter and more elementary than the original one. | |||||
書誌情報 |
関西大学工学研究報告 = Technology reports of the Kansai University 巻 47, p. 75-78, 発行日 2005-03-21 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 04532198 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AN00046916 | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
出版者 | ||||||
出版者 | 関西大学工学部 |