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Abstract 

 
This purpose of this study is to propose a 

knowledge-discovery system that can abstract helpful 
information from character strings representing 
shopper visits to product sections associated with 
positive and negative purchasing events by applying 
character string parsing technologies to stream data 
describing customer purchasing behavior inside a 
store. Taking data that traced customers' movements 
we focus on the number of times customers stop by 
particular product sections, and by representing those 
visits in the form of character strings, we propose a 
way to efficiently handle large stream data. During our 
experiment, we abstract store-section visiting patterns 
that characterize customers who purchase a relatively 
larger volume of items, and are able to show the 
usefulness of these visiting patterns. In addition, we 
examine index functions, calculation time, and 
prediction accuracy, and clarify technological issues 
warranting further research. In the present study, we 
demonstrate the feasibility of employing stream data in 
the marketing field and the usefulness of the employing 
character parsing techniques. 
 
1. Introduction 
 

Thanks to technological advances and a lowering of 
implementation costs, radio frequency identification, 
commonly known as RFID, has come to be used in a 
variety of businesses. In 2005, the Ministry of 
Economy, Trade, and Industry conducted an 
experiment entitled the "Future Japanese Store 
Project." In the experiment, shopping carts equipped 
with RFID devices were used to grasp customers' 
behavior within stores by gathering data on customer 
behavior and purchasing activity at the store counter. 
In this project, data on customers' movements within 
the store was gathered electronically, and thus it was 
possible to obtain detailed data on customer purchasing 
behavior within the store, something which had 
previously remained totally unknown. The focus on 

using RFID to gather detailed data on customer 
behavior within the store is a trend observed not just in 
Japan but in Europe and America as well. 

Until now, in order to understand consumer 
behavior in the retail industry, historical data on 
customers, like point-of-sale data (POS data) has 
traditionally be used. Using such data, one can 
determine which customer purchased what and where, 
and that data can then in turn be analyzed in greater 
detail. For example, in the field of marketing, 
Guadagni and Little [3] and Gupta [4] proposed 
consumer purchasing behavior models using such data. 
More recently, in order to handle large volumes of data, 
data mining was conducted in many industries [5] [14], 
and this was helpful for improving sales promotion 
activities or brand strength. However, while customer 
purchasing history data is able to record the purchasing 
results for a given customer, it is not able to shed any 
light on how customers moved through the store or 
how they came to purchase them. In previous studies, 
in other words, the route traced by customers within a 
store was treated as a form of black box, and only the 
data on resulting purchases was made the subject of 
subsequent analysis. 

Progress in RFID technology in recent years 
brought a complete about face to that situation. In 
particular, in marketing applicability studies on RFID 
technology, the greatest emphasis was placed on 
providing RFID devices for customers or their carts, 
and analyzing customer routes within the store by 
tracing their movements and determining their 
behavior [11]. Tracing customers' movements within a 
store makes it possible to have a better understanding 
of what and why customers make purchases than is the 
case when simply noting the product purchases, as was 
the case with previous marketing studies. There have 
been very few studies based on customer data that 
describes customer movements within the store. The 
reason for this is that until now it was exceedingly 
difficult to obtain such data. Accordingly, customer 
movement data obtained using RFID will be a 
springboard for new avenues of research in the field of 
marketing. 
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Among studies that have employ
customer movement data analysis, the
Larson et al. [10]. They employed a cl
that improved on the k-means algorith
discovered a number of customer group
these customer groups in data, they
suggest a number of hypotheses.  How
there have been no studies of applied 
or research focusing on classifica
abstraction of characteristics based
movement data. 

In the retail industry, those targeting
given marketing strategy need to
characteristics and understand purch
Accordingly, application studies t
classification problems and characteri
and not just clustering, are thought to
business implications. 

The RFID data used in the present s
referred to as stream data or a data stre
is data in which changes in a subje
electronically and continuously over
distribution and communications fie
tremendous need to obtain useful inform
such data. Moreover, such data ha
attention of many researchers as an im
of application for data mining. Howev
volume of data tends to be huge and b
tends to be unstructured, it is difficult t
methods that target the sort of tabular 
studies were largely ignored. 

We introduce knowledge expression
character strings for stream data includ
about customer movements, and hav
adoption of EBONSAI [7] [15], a ch
application used in the field of business
by abstracting information on the path
trace within a store and expressing tha
the form of character strings, we thoug
rule-based abstraction using existing 
parsing algorithms. The application 
technology to a new field not only d
usefulness of that technology but als
technological issues at the same time. I
applying this approach to actual stream
to lay open discussions of technologica
feasibility of applying it to stream 
character parsing methods are applied. 
 
2. Analysis of Customer Mov
Character Strings 
 

yed RFID-based 
ere is a study by 
lustering method 
hm, and thereby 
ps. By exploring 
y were able to 
wever, until now 

implementation 
ation issues or 
d on customer 

g customers for a 
o grasp these 

hasing behavior. 
that focus on 
istic abstraction, 
 have important 

study is typically 
eam. Stream data 
ect are recorded 
r time. In the 

elds, there is a 
mation based on 

as attracted the 
mportant domain 
ver, because the 
because the data 
to directly apply 
data that in past 

ns in the form of 
ding information 
ve proposed the 
haracter parsing 
s. In other words, 
s that customers 

at information in 
ght to implement 
character string 
of this existing 

demonstrates the 
so clarifies new 
In this study, by 
m data, we hope 
al issues and the 

data to which 

vements and 

2.1. Analysis of Customer 
Character Strings 
    Customer movement analysis is 
method that makes it possible to im
of store layout design and sales p
analyzing the routes that customers
Figure 1 shows the movement of 
store superimposed over the store 
customer movements and their d
using linked lines with arrows. 
where a customer stops are shown
red nodes indicate locations w
purchased something. As can be s
customers move in extraordinarily
when doing their shopping. 

Figure 1. An example of custom
 
A particularly important influ

behavior is the rate at which a c
particular section of the store; in o
key is whether the customer actu
stops in any given section. This is e
as product section stops. Natural
where customers stop by a section 
anything. Whether the custom
something can be easily determine
movement data with the pur
information is particularly import
store merchandizing industry. For
looking at customer movement da
focus on customer stops at pr
abstract characteristics of the rout
store by the customer. 

Because it is difficult to proc
obtained by RFID as is, some ad
measures must be undertaken. For
paper, we employ character str
representations that can be used t
movement data. We shall explain t

Movements and 

a store management 
mprove the efficiency 

romotional plans by 
s take within a store. 
a customer within a 
layout. The paths of 

directions are shown 
Moreover, sections 

n as nodes, whereas 
where the customer 
seen from the figure, 
y complex manners 

 
mer movement data. 

ence on purchasing 
customer stops in a 
other words, what is 
ually passes by and 
expressed in the data 
lly, there are cases 
but elect not to buy 

mer chose to buy 
ed by comparing the 
rchase data. This 
tant to those in the 
r this reason, when 

ata in this paper, we 
oduct sections and 
tes taken within the 

ess the stream data 
dditional processing 
r that reason, in this 
rings as knowledge 
to analyze customer 
this transformational 
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process with reference to Figure 2. 2a
data obtained using RFID. The data 
variety of items, including RFID tag nu
cart state, and acceleration in the X and
a function of time and customer ID. T
transformed using the layout mapping
2b. This layout mapping table has bee
floor section IDs by joining the RFID
store location points. Each RFID recor
into a character that uniquely identifie
this point, this narrows the data to one
which section within the store the custo
located. Then, by linking up the succ
IDs based on the order in which the 
different sections of the store, we ob
string pattern like that shown in 2d. Fo
use the mapping table, we can express t
visiting pattern for the customer identif
Figure 2 as "AACFM." 

 

Figure 2. RFID data and product-
pattern strings. 

 
2.2. Purpose of This Research 

The purpose of this research is
knowledge discovery system that can
information from character strings rep
section visiting patterns for both positi
purchasing events. This is accomplish
character string parsing technologies 
pertaining to customer purchasing beh
store. At the time that we devised this s
use of a previously existing syst
EBONSAI. EBONSAI [5] [15] is a tim
technique adapted from the BONSAI c
approach employed for the genome pro
EBONSAI had been used for time se
sales data, web log data, and the like, 
been used for the kind of stream data t
by RFID. In this paper we hope to dem
can be applied to the kind of stream d
field of marketing. We shall do thi
technological issues, showing the meth

a shows the raw 
includes a wide 
umber, shopping 
d Y directions as 
This raw data is 
g table shown in 
en provided with 
D tags with the 
rd is transformed 
es each floor. At 
e thing, namely, 
omer is currently 
cession of floor 
customer visits 

btain a character 
r example, if we 
the store-section 
fied as Nancy in 

 
-section visiting 

s to propose a 
n abstract useful 
presenting store-
ive and negative 
hed by applying 
on stream data 

havior within the 
system, we made 
tem known as 

me series analysis 
character parsing 
oject. Up to now, 
eries analyses of 
but it had never 
that is generated 
monstrate that it 

data found in the 
is by clarifying 
hod's usefulness, 

and applying it to character parsi
stream data. 

 
2.3. EBONSAI 

EBONSAI is an adaptation 
character parsing system that was o
in the field of molecular biolog
whereby positive and negative eve
character strings, and using tho
strings or partial sequences high
trees are generated. We shall begin
the BONSAI algorithms that for
EBONSAI system. 

Let P be positive data set, N b
and |P| and |N| be the numbers of 
respectively. Given a substring α

the numbers of records containing

respectively, and let Fp  and Fn
records not containing α in P a
Defining entropy function ENT(x
manner, ENTሺx, yሻ ൌ ൜0                              x ൌെx log x െ y log y      
we define in the following expr
obtained after classifying the ori
subsets depending on whether da
substring or not. 
 ୮Tା୬T|P|ା|N| ENT ቀ ୮T୮Tା୬T , ୬T୮Tା୬Tቁ 
         ୮Fା୬F|P|ା|N| ENT ቀ ୮F୮Fା୬F , ୬F୮Fା୬Fቁ.     

We compute α which minimizes
we choose α for which the in
maximized. After partitioning the 
on α, BONSAI continues to pro
manner. 

Like BONSAI, EBONSAI inco
indexing mechanism. This mechan
substituting the smallest possible c
given characteristic character set 
This makes it possible to abstract 
can interpret relatively small cha
reducing the search space. From th
Σ, we convert the original charac
mapping (image) φ for the sm
letters generated randomly Γ , 
mentioned manner generate a dec
search until the neighborhood of 
refined, and output a decision tree 

ing for this kind of 

of the BONSAI 
originally developed 
gy. It is a system 

ents are expressed as 
se partial character 

hly refined decision 
n by first explaining 
rm the core of the 

be negative data set, 
records in P and N, 

α, let Tp  and Tn be 

g α in Tp  and Tn , 

 be the numbers of 
and N, respectively. 
x,y) in the following ൌ 0 or y ൌ 0        x, y ് 0    (1) 

ression the entropy 
ginal data into two 
ata contains α as a 

       (2) 

s this value. Namely, 
nformation gain is 
original data based 

ceed in a recursive 

orporates an alphabet 
nism is achieved by 
character string for a 
for positive events. 
high-level rules that 

aracter strings while 
he total alphabet set 
cter string using the 

mallest collection of 
and in the above-
ision tree. Next, we 
φ cannot be further 
that has the greatest 
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discrimination. By using the appro
listing, it is possible to refine the cl
simplify one's hypothesis. 

 

Figure 3. Example of EBONSAI out
 
EBONSAI functions are easy to

looking at the output. Figure 3 gives
EBONSAI output. Based on the upper
EBONSAI converts the four given c
into 1s and 0s. For positive events 
converted, it is possible to check wheth
with character strings abstracted from
decision tree. For example, we follow 
arrows in the case that a character s
included, and follow along the "no" a
where it is not. In this way, by usi
converted character strings, EBONSA
decision trees having a relatively si
ability. Because EBONSAI was for the
for purchasing pattern character stri
applied to character string data c
character strings or more. In additi
where EBONSAI was improved are des

 
 In business, in order to hand

cause-and-effect relations, it is neces
with a various attributes simultaneo
reason, EBONSAI is able to emplo
character string attributes. In addition, 
decision tree algorithms, EBONSA
category attributes and numerical at
model simultaneously, and not just 
attributes. 

 EBONSAI can handle data s
form of a table described using XML
conjunction with the MUSASHI open 
a viable system can be easily constructe

 

opriate alphabet 
lassification and 

 
tput. 

o appreciate by 
s an example of 
r mapping table, 
character strings 
that have been 

her they conform 
m the root of the 

along the "yes" 
tring of "11" is 
arrows for cases 
ing only a few 
AI can generate 
mple predictive 
e most part used 
ings, it can be 
comprising 100 
on, other areas 
scribed below. 

dle a number of 
sary to contend 
ously. For this 
y a number of 
just like general 

AI can handle 
ttributes in one 
character string 

structured in the 
L, and if used in 

source platform, 
ed. 

2.4. System Overview 
Figure 4 shows a concept diagra

discovery system employing 
developed. Three databases were u
and each of these is associated w
system. The preprocessing syste
XML form, and then transfer thi
generator and attribute generator
Next, the data is combined and a 
is constructed based on the mining
was put together using the MUS
platform for data mining [6]. 

 

Figure 4. Overview of the kn
system for customer movement dat

 
We will now explain all of thes

in greater detail. This system empl
The first database houses data on c
history, and includes information
purchase price, product informatio
second database contains store layo
database contains a database of pro
RFID sensor location informatio
possible to track customer position
sections in the store where purch
obtained. The third database con
logs. By pooling all of these data
possible to determine how a give
within the store, as well as where
customer purchased were located w

Next, let's examine the target 
What we have developed here is
pooling various databases toget
classification models for customer
necessary to generate target attribu
classification from the above-m
Using the RFID sensor log databas
history database, this component 
freely defined by the user. For exam
to contemplate the ideal customer 
or the characteristics of buyers of 
In the same way, we can prepa
generate explanatory attributes th
models from the above database. 

am of the knowledge 
RFID which we 

used for the raw data, 
with a preprocessing 
ems handle data in 
is data to the target 
r in the next stage. 
classification model 
g engine. All of this 
SASHI open source 

 
nowledge discovery 
ta. 

se major subsystems 
loys three databases. 
customer purchasing 
n on customer ID, 

on, and the like. The 
out information. This 
oducts together with 
on. This makes it 

n information and the 
hased products were 
ntains RFID sensor 
abases together, it is 
en customer moved 

e the products that a 
within the store. 

attribute generator. 
s a system that, by 
ther, can construct 
rs. Accordingly, it is 
utes to be subject to 

mentioned databases. 
e and the purchasing 
generates attributes 

mple, we might want 
for a particular shop 
a particular product. 

are components that 
at use classification 
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From this, we can derive explan
relating to purchasing information o
product or a product category 
information on customer movement w
For example, using data on the custom
within a store, we can generate a seq
that elucidates the order in which a c
various product sections of a store. 

Finally, the mining engine ca
classification model based on target
explanatory attributes. The mining 
system was developed using EBO
foundation. For that reason, decision
output using numerical figures, catego
attributes that were generated by the a
databases. 

 
3. Experimental Results 
 
3.1. Explanation of the Data 

We will now demonstrate how this
used with actual customer movement
perform an experiment on rule abstra
customer movement data gathered at a 
market in Japan. In this project, the sho
customers used were equipped with R
and each product section had RFID tag
possible to track customer movements 
precisely. The experiment was conduct
2006. In addition to passenger movem
layouts and purchasing history data wer
The floor layout within the store w
seven sections. Each of those sections h
and in total there were 17 subsections. 

The purpose of the analysis in this 
to use the system proposed in this pape
characterized the movements of custom
a relatively large number of items. In
data was somewhat restricted, as we s
the number of purchased items at the tim
visited the store. However, we did
purchasing power (the total amoun
customer spent per month on purchas
consider the intervals between sho
frequency with which customers sho
clustering method we used k-means, 
customers purchasing a relatively la
items as "high-volume" (HV) custome
of the customers being deemed "low
customers. The average number of item
HV customers was 19 per store visit; th
for LV customers was 7.86. 

In this experiment, we used two kin
numerical attributes and character strin

natory attributes 
on a particular 

together with 
within the store. 
mer's movements 
quence attribute 
customer visited 

an construct a 
t attributes and 
engine for this 
ONSAI as its 
n trees can be 
ories, and string 
above described 

s system can be 
t data, and will 
action. We used 
mid-sized super 

opping carts that 
RFID receivers, 
gs. This made it 
within the store 

ted in September 
ment data, floor 
re also gathered. 

was divided into 
had subsections, 

experiment was 
er to clarify what 
mers who bought 
n this case, our 

simply measured 
me the customer 
d not consider 
nt a particular 
ses), nor did we 
opping trips or 
opped. For our 
and we defined 

arge number of 
ers, with the rest 
w-volume" (LV) 
ms purchased by 
he same average 

nds of attributes, 
ng attributes, and 

these were output from the compo
explanatory attributes. In terms 
attributes, we used two kinds 
visiting pattern strings, those for p
those for product subsections. 

In addition, for numerical a
component ratios comprising the t
stayed in each section x, where x w
7, relative to total time spent in 
customer i remained in section x 
component ratio rix of time spent b
x was expressed as follows: 

 r୧୶ ൌ ୲౮∑ ୲౮              
 
For the component ratios of tim

we used a model having seven attri
 

3.2. Rule Abstraction and Inte
When we built a classifica

EBONSAI, we obtained extremely
those shown in Figure 5. In t
represents LV customers, and cla
customers. Attribute f is the com
customer spent in the fish sectio
visiting pattern character string 4 
section"; 5 represents the "general 
6 stands for the "vegetables section

 

Figure 5. Rules abstracted using
 
We obtained three rules. The fi

the percentage of time spent i
exceeded 10%, and the custom
vegetable section to the fish secti
general goods section, then the cu
customer. The second rule states t
time spent in the fish section excee
visiting pattern there was a m
vegetable section to the general go
customer was an LV customer. Fi

onent that generates 
of character string 
of product section 

product sections and 

attributes we used 
time that a customer 

was a value from 1 to 
the store. Thus, if 

tit seconds, then the 
by customer i in area 

                     (3) 

me spent in each area, 
ibutes. 

erpretation 
ation model using 
y simple results like 
the figure, class 1 
ass 2 represents HV 
mponent ratio that a 
on; product section 
represents the "fish 
goods section"; and 

n." 

 
g EBONSAI. 

irst rule states that if 
in the fish section 

mer goes from the 
ion followed by the 
ustomer was an HV 
that if the amount of 
eded 10%, and in the 

movement from the 
ods section, then the 
inally, the third rule 
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states that if the percentage of time s
section was less then 10%, and there 
string indicating movement from the v
to the general goods section, then the c
LV customer. 

 

Figure 6. Patterns of movement 
sections by HV and LV customers. 

 
What is characteristic of the rules t

is that the area visited by the custome
vegetable section (in other words, the 
fish section) determined the number o
customer would purchase. In other wor
whether the customer was an HV or a
(see Figure 6). According to specialis
fish sections are extremely importan
patrons' loyalty. In the past, sho
traditionally used a simple rule of thum
longer a customer spent in the fish se
items they would buy. However, in our
determined that what is really mattered
of customer movement between produc

First off, because target attribu
classify the number of items pur
customer on that day, then HV custom
to visit more sections of the store. On
LV customers, who purchase relative
probably visit only those product sect
the items that they initially targeted
However, in this experiment, there wa
difference between the probability of
customer visiting the fish section. Whe
these discoveries with shopkeepers, it 
that most HV customers get some form
in the vegetable section, and may be d
or not to buy some fish. In their opini
to opt for some fish while in the vege
something that happens only after the
the store. For small retail stores, how cu

spent in the fish 
was a character 

vegetable section 
customer was an 

 
between store 

that we obtained 
er following the 
general gods or 

of goods that the 
rds, this decided 
an LV customer 
sts, supermarket 
nt for attracting 
opkeepers have 
mb whereby the 
ection, the more 
r experiment, we 
d was the pattern 
ct sections. 
utes essentially 
rchased by the 

mers are expected 
n the other hand, 
ely fewer items, 
tions containing 
d for that day. 
as no significant 
f an HV or LV 
en we discussed 
seems they felt 

m of stimulation 
deciding whether 
ion, the decision 
etable section is 
ey have entered 
ustomers are led 

to move from the vegetable sectio
is an important consideration when
layout. 

 
3.3. Usefulness of Character
Method and Technological Iss

Studying the above experimen
that analysis of visiting patterns 
using the character parsing analysi
important discoveries when compa
in the past. Knowledge represen
strings is able to express far ric
visiting patterns compared to typi
fact, the patterns derived from o
able to abstract characteristics of 
patterns within the store. In this w
usefulness of the character string
quite high not just for purchasing h
for stream data obtained in marketi

 

Figure 7. Calculation time as a f
 
We would now like to discuss t

technological issues surrounding o
with respect to prediction accura
time. Figure 7 shows the relation b
calculation time needed to ab
EBONSAI. Data size and calculat
proportional, and we expect that a
size in the future is not likely to be 

Next let's compare EBONSAI w
from the standpoint of prediction
evaluation index, we used over
defined as a percentage of the 
positive events out of the total 
Figure 8 shows an average of cr
fold) for the various methods. The
not employ character strings f
visiting patterns, and only empl
comprising the component ratios 
given product section. As can be
EBONSAI was approximately 4%

on to the fish section 
n designing the store 

r String Parsing 
sues 
ntal results, we feel 
to product sections 

is method has led to 
ared to methods used 
nted using character 
cher information on 
ical tabular data. In 
ur experiment were 
customer movement 

way, we feel that the 
g parsing method is 
history data but also 
ng. 

 
function of data size. 

the usefulness of and 
our proposed method 
acy and calculation 
etween data size and 

bstract rules using 
tion time are almost 
an increase in record 

a major obstacle. 
with other techniques 
n accuracy. For our 
rall accuracy [13], 
correctly classified 
number of events. 

ross verification (10 
 other techniques do 

for product section 
loy seven attributes 

of time spent in a 
e seen in Figure 8, 

% more accurate than 
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other methods. This seems to show 
character string attributes to describe v
as was done in EBONSAI, p
information. 

 

Figure 8. Comparison of EBONS
accuracy with other methods. 

 
Lastly, let us explore the indexin

contained within EBONSAI. The in
EBONSAI has the effect of not only 
time but also making it easier to interp
of rules. For example, EBONSAI can
identify brand switching patterns, su
manufacturer launches a new product 
switches between products in the sa
having the same flavor. In such cases, u
is often sufficient to simply substitute 
indicate this switch. As a result, the
abstracted are simplified, and it bec
feasible to interpret rules as a result. H
case of customer movement analysis, i
perform well from the standp
interpretability. The reason for this is t
product sections were substituted 
character, and it was difficult to work 
meaning in the grouping. In fact, in d
specialists, it seems that indexing
confusion. With customer movement a
most specialists are interested in disc
routes that may exist, in that kind o
either do not use indexing, or they us
index size. 

However, increasing the index size g
in higher calculation times. Figure 9 sh
between calculation time and index si
EBONSAI parameter. In this e
subdividing product sections into 
subsections, subdivided the store 
subsections. The index size is a
EBONSAI that the user can specify. T

that classifying 
visiting patterns, 
provides useful 

 
SAI’s prediction 

ng functionality 
ndexing used in 

reducing search 
pret the meaning 
n be applied to 
uch as when a 
or when a user 

ame category or 
using indexing it 
a single letter to 
e rules that are 
comes far more 
However, in the 
indexing did not 

point of rule 
that a number of 
for using one 

k out any special 
discussions with 
g could invite 
analysis, because 
covering special 
of analysis they 
se a rather large 

generally results 
hows the relation 
ize, which is an 
experiment, by 

more detailed 
into 17 total 

a parameter in 
he default index 

size is 2. If we look at matters fro
prediction accuracy, in most cases,
accuracy using an index size of 2
general trend is that the smaller the
time required to perform calcula
shown in Figure 9, the calculation 
an index size of 7 and onwards, b
no increase beyond that point. The
is that subsections that were 
infrequently are included in the c
from the standpoint of calculatio
index size is made rather large, th
However, because the maximu
EBONSAI is 9 at present, in the fu
need to be modified so that it can 
sizes. Moreover, in the case o
customer can visit various produc
in index size can incur an extreme
time. Consequently, future researc
into alternative approaches other
reduce search times. 

 

Figure 9. Calculation time as a f
 
4. Conclusions 
 

In the present study we s
information on customer purch
applying existing character string
and applying them to stream data 
movements and obtained using R
customer movement data we chos
that customers made to each prod
expressing product section visiting
character strings, we sought to effi
volumes of stream data. We found
who purchase a relative large num
to move from the vegetable section
While hypotheses obtained this 
novel and rich in their implications
rather small sample size, and fut

om the standpoint of 
, we can obtain high 
2 or 3. Moreover, a 
e index size, the less 
ations. In the graph 
time increases up to 
ut thereafter there is 

e reason this happens 
visited extremely 

calculations. And so 
n time, even if the 
he system can cope. 

um index size for 
uture, the system will 

handle larger index 
f shops where the 

ct sections, increases 
ely large calculation 
ch will need to look 
r than indexing to 
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needed. Moreover, through this experiment, we were 
able to appreciate certain issues pertaining to existing 
character string parsing techniques. 

Nevertheless, there are fundamental problems with 
applying the character string parsing techniques used in 
this study. Namely, time series information with 
respect to visiting patterns largely vanishes. For 
example, important information like the time spent at a 
particular product section or the amount of time spent 
moving from one section to another was not reflected 
in the character-string based knowledge representation. 
To resolve such issues, it seems that a fruitful approach 
might be to introduce graphical data. If graphical data 
were provided, one would be able to include not only 
product section visiting patterns but also time series 
information such as the amount of time spent between 
sections or at a particular section. We hope to address 
such issues in the future. 
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