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Abstract
The interfacial Dzyaloshinskii–Moriya interaction (I-DMI) occurs in a ferromagnetic 

wire on a heavy metal. Magnetic moments (MMs) at the edge of the wire are forcibly 
canted by the I-DMI. The influence of the canting MM at the wire edge on the wire interior 
is unclear. Here, we theoretically investigate the MMs under the I-DMI. The effect of the 
canting of MMs at the edge of the interior is shown to increase with a smaller exchange 
energy and a larger perpendicular anisotropy. A cosine of the cant angle of the MMs 
decreases exponentially with distance from the edge.

1 Introduction

Controlling the magnetic state of a ferromagnetic nanowire is necessary for the 
development of magnetic memories and arithmetic devices. A magnetic domain produced in 
the wire, which represents the binary digits of magnetic memories, is achieved by applying a 
spin current, or an external magnetic field.1),2) Spin-polarized current (SPC) induced domain 
motion is a particularly important issue for domain wall (i.e., racetrack) memories.3)

In a perpendicularly magnetized thin wire, a strip domain and a magnetic skyrmion are 
stabilized by the Dzyaloshinskii–Moriya interaction (DMI)4). The interfacial DMI affects 
magnetic moments (MMs) near the interface and stabilizes the magnetic skyrmion, or strip 
domain, with a Néel-type domain wall in a wire layered upon a heavy metal, such as Pt or 
Ru.5)

In ferromagnetic wire on a heavy metal system, the magnetic states of the domain wall 
exert an influence on the domain motion.6) The domain wall length is calculated from the 
magnetic energy,7)-9) which is further discussed in Section 2. In a perpendicularly magnetized 
nanowire, the interfacial DMI strongly affects MMs near the wire edge and cants the MMs via 
a boundary condition of the magnetization at the edge.10)

As summarized above, the domain wall length and the MMs canting at the edge have been 
investigated in a perpendicularly magnetized wire under the interfacial DMI. When the width 
of the wire is narrower, the cant of the MMs affects the magnetization in the wire. Although 

1　Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680, Japan
2　Department of Electrical and Electronics Engineering, National Institute of Technology, Numazu 
College, Numazu, Shizuoka 410-8501, Japan

*　Correspondence to: Syuta Honda, Department of Pure and Applied Physics, Kansai University, 
Suita, Osaka 564-8680, Japan. E-mail: shonda@kansai-u.ac.jp



62 Yuki Kaiya, Syuta Honda, Hiroyoshi Itoh, and Tomokatsu Ohsawa

the behavior of the magnetization near the wire edge is important for designing a device with 
a narrower wire, the effects of the cant of the MMs at the wire edge on the magnetization 
inside the wire are unclear. Additionally, a long-range interaction is not included in the 
theoretical calculation of the magnetization at the wire edge although the magnetization 
direction depends on the position. The long-range interaction can be introduced in a 
micromagnetic simulation.

Using a one-dimensional model, we investigated the influence of canting MMs at the wire 
edge due to the interfacial DMI on MMs inside the wire without a magnetic domain. First, we 
analyzed, via theoretical calculation, the relationship between the depth-dependence of the 
canting MMs and the magnetic parameters, such as perpendicular anisotropy. Next, we 
compared our theoretically calculated results with those of a micromagnetic simulation. In 
Section 2, we introduce the theoretical analyses of the length of a domain wall, the edge 
canting MMs under the interfacial DMI, and the region length of canting MMs. In Section 3, 
the MMs of a one-dimensional wire with interfacial DMI are simulated using a micromagnetic 
approach. In Section 4, we discuss our results and then summarize our study in Section 5, the 
conclusion.

2 Theoretical analysis of the region length of canting MMs

2.1 Related work for the domain wall length
A domain wall length is estimated from an exchange energy and an anisotropic energy. 

Under a quasi-one-dimensional model, the exchange energy is given as

  (1)

and the anisotropic energy as

  , (2)

where A represents the exchange stiffness constant; K is the effective perpendicularly 
anisotropy constant; S is the cross-sectional area of the region of MMs of θ, where θ is defined 
as the angle between an easy axis of magnetization and the MM; and x0 and x1 are the 
positions of domain wall edges. The effective perpendicularly anisotropy constant K is defined 
as K =K0－Nd μ0 Ms

2, where K0 is the intrinsic anisotropy constant; Ms the saturation 
magnetization; Nd the demagnetizing factor; and μ0 the magnetic constant. Ndμ0Ms

2 is the 
energy density of the demagnetizing field. When K0 is larger than Nd μ0 Ms

2, the magnetization 
points in the direction perpendicularly to the longitudinal direction of the wire.

 	 (3)

is given from Eex+Ek and the principle of least action.7),8)

Since θ of MMs changes from 0 rad to －π rad at the domain wall,
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  (4)

is given from (3), where x=0 is the middle of the domain wall, which is plotted with a solid 
curve in Fig. 1(a). By using a linear approximation with a gradient of ∂θDW(x)/∂x￨x=0, the 
length of the domain wall LDW in a perpendicularly magnetized thin wire is given as

  . (5)

The linearly approximated θDW(x) is also plotted with a broken line in Fig. 1(a). The exchange 
length Lex is defined as Lex=(A/K)1/2.9)

In a perpendicularly magnetized nanowire, the interfacial DMI strongly affects MMs near 
the wire edge and cants the MMs via a boundary condition of the magnetization at the edge, 
as shown in Fig. 1(c).7) The boundary condition is described by the equation:10)

  , (6)

where D represents the interfacial DMI parameter, m' the unit vector of the MM, n the normal 
vector at the wire surface, and z the unit vector of the +z-direction, which is the direction 
perpendicular to the magnetized nanowire from the heavy metal. dm'/dn is the directional 
derivative of m' for the direction of n. Equation (6) is derived from a variation in the magnetic 
energy. For example, the boundary condition for the －x-direction at the edge is ∂m'/∂x= 
D/(2A)(mz, 0, －mx) and from (6), m'=(mx, my, mz), n=(－1, 0, 0), and z=(0, 0, 1). The angle 
between the z-axis and the MMs at the edge, θ0, is given by

  (7)

from the above boundary condition and (3).10)

2.2 Region length of canting MMs
We analyzed the length of the region in which the MMs are canted by the interfacial DMI 

and its boundary condition LD, which is shown in Fig. 1(c). From (3) and (7),

Fig. 1.  Illustration of (a) θDW, (b) MMs near the domain wall, and (c) MMs by the edge in the 
nanowire under the interfacial DMI on heavy metal. Each thick arrow indicates the direction 
of the MM. The grey gradation regions in (b) and (c) represent the surface at which 
interfacial DMI occurs.

x x x

x x
x
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  . (8)

(θ(x) with θ0=π/2 equals to (4).) From a linear equation using ∂θ(x)/∂x￨x=0, LD is calculated 
as

  . (9)

As LD approaches (A/K)1/2 and ∞, θ0 approaches 0 and π, respectively. These convergence 
values are independent of the value of D.

We show LD(θ0) normalized by Lex in Fig. 2. In our calculations, we presumed that θ0 does 
not depend on A or K. Hence, it is presumed that θ0, shown by a line in Fig. 2, changes as D 

changes.

Fig. 2. LD and , which are estimated by Eq. (9) and (15), respectively, normalized by Lex.

LD / Lex increases monotonically with increasing θ0. LD / Lex touches the line of θ0 at θ0=π
/2. At the other regions where 0 < θ0 < π/2, LD / Lex is larger than the line of θ0. LD(θ0 ≥ π/2) 
is considerably increased with increasing θ0.

3 Simulation of the magnetization

3.1 Model and method
Next, we show the simulation results of the magnetic structure in the wire with the 

interfacial DMI. In the simulation, the long-range dipole–dipole interactions, which are not 
considered in the aforementioned analysis, are taken into account in the calculations of the 
energy and the magnetic field. One-dimensional wire structures with 100 nm length in the 
x-direction (lx =100 nm, ly =1 nm, lz =1 nm) were used in the micromagnetic simulation. 
Simulations were carried out by dividing each wire into small cubic cells with dimensions of 
1.0 nm×1.0 nm×1.0 nm, and the MM of each cell was calculated using the Landau–Lifshitz–
Gilbert equation:10),11)

  , (10)

where m represents the unit vector of the MM within each cell; t the simulation time; γ=  
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－1.76×1011 rad∙s－1∙T－1 the gyromagnetic ratio; and α=0.1 the damping constant. Beff is the 
effective magnetic field composed of the contributions from long-range magnetic dipole–dipole 
interactions, short-range exchange interactions, interfacial DMI, and a perpendicular 
anisotropy term.

To estimate the effective magnetic fields, the following parameter values were set for the 
simulation: saturation magnetization Ms=1000 kA∙m－1; D=3.0 mJ∙m－2; A0=15 pJ∙m－1; and the 
intrinsic anisotropy constant K0=0.814 MJ∙m－3 (K=0.50 MJ∙m－3).10) K was estimated from 
K=K0－Nd μ0 Ms

2, where Nd ～0.5 represents the demagnetizing factor; and μ0 is the magnetic 
constant. The Nd is approximated by an infinite cylinder and Nd μ0 Ms

2 is π×105 J∙m－3. The K0 
value was chosen to move the effective perpendicular anisotropy constant of the simulation 
closer to that of previous analyses.

Since the magnetic characteristics of a wire are affected by the strength of the interfacial 
DMI and the magnetic properties of the wire, with the latter controllable by compositional and 
strain modulation,12)-14) in several simulations we used either A'=σA0 or K0'=σ'K0 instead of A0 
or K0, respectively, to assess the relationship between the magnetization and the magnetic 
parameters. σ' provides K'=σK=σ'K0－Nd μ0 Ms

2 > 0.
The boundary condition at the edge of the wire is ∂m/∂x=D/(2A)(mz, 0, －mx). With 

one-dimensional systems, the boundary conditions at the longitudinal side edges are ∂m/∂y 

=0 and ∂m/∂z=0.

3.2 Simulation results
Two types of magnetizations were simulated to determine the effect of the boundary 

condition, represented in (6), on the magnetization. One is the magnetization considering the 
boundary condition of dm/dn=0; and the other is that considering (6). The MM of each cell 
near the left edge is shown in Fig. 3.

Fig. 3.  Simulation results of the MMs in the one-dimensional wire considering the boundary condition 
of (a) dm/dn=0 and (b) Eq. (6). The direction of the MM in each cell near the edge is shown 
with a small arrow.
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z

The total magnetic energy of the system from (6) is 1.3×10－21 J smaller than that from 
dm/dn=0. The following were considered: the energy difference of the magneto static energy 
from the long-range magnetic dipole–dipole interactions is －0.18×10－21 J; the exchange 
energy is +0.49×10－21 J; the perpendicular anisotropy energy is +0.62×10－21 J; and the 
interfacial DMI energy is －2.8×10－21 J. As the interfacial DMI decreases with consideration 
of the boundary condition of (6), the total energy decreases.

In the system with dm/dn=0, all MMs pointed to the +z-direction, as shown in Fig. 3(a). 
Meanwhile, the MM at the edge (x=1 nm) canted outside of the wire in the system using (6), 
as shown in Fig. 3(b). The value of cant angle θ decreased with increasing x, and the MM 
canted slightly, even when x=10 nm.
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When (6) boundary conditions are applied, the cant angle θ as a function of x is denoted 
by the open circles in Fig. 4. To consider the x-dependence of θ, we plotted 1－cosθ using a 
linear-log plot, as shown by the inset of Fig. 4.

Fig. 4.  Simulation results of the θ of each MM in the one-dimensional wire with Eq. (6). The inset 
shows the values that subtracted cosθ from 1 with a linear-log plot.

x

x

The simulated cant angle of MMs at the wire edges, θ0, was 0.38 rad. This value is 33 
percent smaller than θ0=0.55 rad, the analytical value. The simulated value of m at x=0 nm 
was (－sinθ0, 0, cosθ0) and m at x=1 nm was (－sinθ1, 0, cosθ1), where θ1 was 0.30 rad. This 
variance is consistent with the analytical equation of the boundary condition.

The x-dependence of θ, 1－cosθ, decreased exponentially as a function of x and its decay 
length was 2.2 nm. In other words, 1－cosθ can be approximated as (1－cosθ0) exp(－x/λ ) 
with λ ≈ 2.2 nm.

Additionally, the above-simulated λ was compared with the analytical value. θ(x) of (8) is 
approximated as

  . (11)

(A/K)1/2 corresponds to λ and the analytical value of (A/K)1/2 is 2.7 nm, which is 23 percent 
greater than the 2.2 nm of λ estimated from the simulation.

We first estimated LD using a linear approximation of θ from the simulation result. We 
plotted f(x)=(θ1－θ0) x / 10－9+θ0 in Fig. 4 (broken lines). x, provided f(x)=0, is approximately 
4.9 nm. We define x, provided f(x)=0, as the LD obtained from the simulation result. This value 
is 28 percent smaller than the analytical value of LD=6.8 nm calculated from (9) and using 
θ0=0.38 rad from the simulation result. This difference in the simulated and analytical values 
will be discussed in the next section.

Because several θ0, λ, and LD are discussed, we describe the two types of both θ0, and λ, 
and the three types of LD with the following notation and rule: θ0(a) is calculated from (7); θ0(s), 
λ(s), and LD(s) are obtained from the simulation result; λ(a) is calculated from (A/K)1/2; LD(a) is 
calculated from (7) and θ0(a); and LD(a,s) is calculated from (9) and θ0(s). For example, for the 
previously discussed cases, the simulated LD of 4.9 nm is LD(s) and the analytical LD of 6.8 nm, 
obtained from (9), is LD(a,s).
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Next, we investigated the A-dependence of θ. Figure 5(a) shows θ of the MMs in the wire 
with an exchange stiffness constant of A'=0.5A0=7.5 pJ∙m－1, and 1.5A0=22.5 pJ∙m－1, in the 
closed triangles and closed squares, respectively. The wire with 0.5A0 had a θ0(s) of 0.43 rad, 
which is larger than that in the wire with 1.0A0, where λ(s) and LD(s) were 1.3 nm and 3.2 nm, 
respectively. Meanwhile, in the wire with 1.5A0, θ0(s), λ(s), and LD(s) were 0.34 rad, 2.9 nm, and 
6.2 nm, respectively. The simulated A-dependence of θ0(s), λ(s), and LD(s) showed the same 
behavior as the analysis results. These simulated values were also smaller than the values 
obtained in the analytical results.

Next, we investigated the relationship between K and θ. In Fig. 5(b), θ of the MMs in the 
wire with a perpendicular anisotropy constant of K'=0.5K=0.25 MJ∙m－3 (K0'=0.564 MJ∙m－ 3) 
and 1.5K=0.75 MJ∙m－3 (K0'=0.106 MJ∙m－3), is shown by the open triangles and open squares, 
respectively. All other magnetic parameters are the same as those described in Section 3.1, 
and the plot with the open circles in Fig. 5 is the same as that shown in Fig. 4.

Fig. 5.  Simulation results for θ of each MM in the wire with (a) A'=A (circles), 0.5A (triangles), and 
1.5A (squares) and (b) K'=K (circles), 0.5K (triangles), and 1.5K (squares). A' and K' are the 
exchange stiffness constant and perpendicular anisotropy constant used in each simulation, 
respectively.

x x

xx

The wire with 0.5K had a θ0(s) of 0.47 rad, which is larger than that in the wire with 1.0K. 
λ(s) and LD(s) were 2.7 nm and 5.9 nm, respectively. Meanwhile, when the wire had a value of 
1.5K, θ0(s), λ(s), and LD(s) were 0.33 rad, 1.9 nm, and 4.3 nm, respectively. The behavior of the 
simulated K-dependence of θ0(s), λ(s), and LD(s) is consistent with that of the analytical results. 
However, these simulated values are lower in magnitude than the analytical results.

Each simulation value and analytical value is described in Fig. 6. Although we can 
represent the two curves as a function of σD2/AK, they are shown to clarify the A-, 
K-dependence of λ and LD.

Figure 6(a) compares θ0(a) and θ0(s). The minimum value of σ in the analysis is 0.3. θ0(a) 
approaches π/2, as σ approaches 0.3. θ0(s) in the wire, with σ > 0.3, θ0(s) decreased with 
increasing σA. This behavior is consistent with θ0(a). When σ < 0.3, the value of θ0(s) increased 
with decreasing σA. Meanwhile, θ0(s) monotonically decreased with increasing σK. Comparing   
θ0(s) and θ0(a) in the wire, with σ < 0.3, is challenging. The difference between the A- and 
K-dependence of θ0(s) is a result of long-range magnetic dipole–dipole interactions and the fact 
that this is a one-dimensional system. The θ0(s) values were smaller than θ0(a) values. These 
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differences will be discussed in Section 4.
Figure 6(b) shows the comparison between λ(a) and λ(s). We estimated that λ(s), from θ, 

to be in the range of 0 < x < 10 nm. Although the characteristics of A- and K-dependence of 
λ(s) were consistent with that of λ(a), these simulation values were also smaller than those of 
the analytical results.

Fig. 6.  A- and K-dependence of (a) θ0, (b) λ, and (c) LD. σA0 or σK0 instead of A or K, respectively. 
(a) The solid curve indicates the A- and K-dependence of θ0(a). The circles and squares 
indicate the A- and K-dependence of θ0(s), respectively. (b) The solid and dashed curves 
indicate the A- and K-dependence of λ(a), respectively, and the circles and square indicate the 
A- and K-dependence of λ(s). (c) The solid curve, open circles, and plus signs indicate the 
A-dependence of LD(a), LD(a,s), and LD(s), respectively, and the dashed curve, open squares, and 
cross marks indicate the K-dependence of LD(a), LD(a,s), and LD(s), respectively.

The comparison of three types of LD is shown in Fig. 6(c). The A-dependence of LD(a,s) was 
closer to that of LD(a). From Fig. 2, we observed that the θ0-dependence of LD is small when θ0 
is smaller than 1 rad. Hence, the A- and K-dependence of LD(a,s) is almost equal to that of LD(a), 
although the A- and K-dependence of θ0(s) differs from that of θ0(a). However, the A- and 
K-dependences of LD(s) were smaller than those of LD(a) and LD(a,s). Almost all θ0(s), λ(s), and 
LD(s) values were smaller than the analytical values, as will be discussed later.

In our system thus far, MMs at the edges cant outside of the edge. When D is －3.0 
mJ∙m－ 2, MMs at the edges cant inside the edge, as shown in Fig. 7, and θ0 was 0.53 rad.

Fig. 7.  Simulation results of MMs in the one-dimensional wire with D =－3.0×10－3 J∙m－2. The 
direction of MMs near the edges is indicated with arrows.

0 10 15
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y x
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4 Discussion

One reason for the difference between simulation and analytical results is the estimation 
and presumption of demagnetization. The anisotropy energy, (2), considers the local dipole 
interaction but not the long-range magnetic dipole–dipole interactions. To estimate the K0 
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used in the simulation, we assumed a demagnetizing factor of an infinite cylinder; however, 
our focus is on the magnetization near the edge. When the magnetization cants at the edge, a 
magnetic pole is produced there. At the edge of the wire, having the equable MMs, Nd for Nd 

μ0 Ms
2 is 0.2 (diagonal elements of the demagnetizing tensor are Nx =0.2, Ny =0.4, Nz =0.4). 

Furthermore, in the wire with position-dependent MMs, the demagnetizing factor decreases 
further and the K0 approaches K nearer the edge, assuming K is independent of position. The 
position-dependence of K0 may influence the results of the study.

In this study, the values of the minimum LD(a)=(1.5A/K)1/2 and λ(a)=(A/K)1/2 are 
approximately 6.71 nm and 2.8 nm, respectively, with 15 pJ∙m－1 of A and 0.50 MJ∙m－3 of K. For 
comparison, we have calculated LD(a) and λ(a) for other perpendicularly magnetized materials. 
CoFeB has an A value of approximately 30 pJ∙m－1 and K=0.50 MJ∙m－3.15),16) In this case, the 
minimum LD(a) and λ(a) are approximately 9.5 nm and 3.8 nm, respectively. TbFeCo has an A 
value of approximately 1.0 pJ∙m－1 and K=0.1 MJ∙m－3,17) resulting in a minimum LD(a) and λ(a) 
of approximately 3.9 nm and 1.6 nm, respectively. Based on their A and K values, better-
known perpendicular magnetized materials may have Ld(a) and λ(a) values of several dozen 
nanometers.

The value of intrinsic anisotropy K0 was approximately 60 percent larger than that of 
effective anisotropy K in our findings. This resulted in the difference between the analytical 
and simulation results. Some materials might have a K that is close to K0. It is known that the 
saturation magnetization of TbFeCo can be controlled from 45 kA/m to 350 kA/m with a 
compositional modulation17). In the case of Ms=45 kA/m, the demagnetization energy density, 
μ0Ms

2, is 1.27 kJ∙m－3, which is sufficiently smaller than the 0.1 MJ∙m－3 of the effective 
anisotropy energy density, which we assume to be the maximum value of Nd. The 
demagnetization hardly depends on the effective anisotropy, and hence the K0 value 
approaches the K value. In this case, the simulation results may equal the analytical results.

Earlier, we estimated LDW by using the linear approximation with a gradient of ∂θ(x)/∂x￨x=0.  
The domain wall length is sometimes estimated using a different approximation.8) In such a 
case, θ(x) is approximated as a linear equation prior to the energy calculation. In the DW, 
θ(x) in the integrand for the energy calculation is approximated as θ(x)=(π/LDW)x because 
θ(x) changes from 0 to π rad by LDW. Hence, this anisotropic energy  is approximated as

  , (12)

and the domain wall length  is also given as

  (13)

from ∂( )/∂LDW=0 of the variation principle.
Similarly, LD is also calculated. In the integrand for the energy calculation θ(x) is 

approximated as θ(x)=－(θ0 / )x+θ0. Here, we express  and  as LD and Ek, respectively. 
 for  is approximated as

  , (14)
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and  is given as

  
.
 (15)

 is normalized by Lex, as shown by the dotted curve in Fig. 2.  increases with oscillation as 

θ0 increases / Lex by θ0 ≥ π/2 is near value to . Meanwhile, / Lex by θ0 < π/2 fails to 
attain  and  by θ0=0 approaches to  Lex.

A similar analysis applies to the system with a perpendicularly magnetized film or wire. 
For example, if θ is changed to θa from θb, Ek is substituted with

  , (16)

and the domain wall length LW is estimated as

  
.
 (17)

This formula might apply to a domain wall formed at a corner in an L-shaped wire or a 
domain wall in a wire with magnetizations canting by application of an external magnetic field 
and a SOT.

5 Conclusion

The interfacial DMI exerts an influence over the MMs by the edges in the nanowire. The 
magnitude and the effects of canting MMs inside the wire depend on A, K, and D values. The 
LD is approximately (A/K)1/2 when θ0 is small. The x-dependence, 1－cosθ(x), decreases 
exponentially with (A/K)1/2 of its decay length (the inset of Fig. 4 and (11)). The effect of 
canting of the MM at the edge on the inside grows with smaller A and larger K values. The 
length of the canting MM is approximately ten nanometers in better-known perpendicularly 
magnetized materials. This canting might have some effect on the domain formed in a narrow 
width wire. Our results are useful for magnetization analysis in magnetic devices with a 
ferromagnet layered on a heavy metal, such as domain motion memories and magnetic 
random access memory. Our studies use a one-dimensional model without the magnetic 
domain. Future studies should investigate the magnetic states of two- and three-dimensional 
models, such as a nanowire with the domain.

Acknowledgment

We are grateful to the Kansai University Fund for Supporting Young Scholars 2019.



71DEPTH-DEPENDENCE OF MAGNETIZATION AT A FERROMAGNET EDGE 
UNDER THE INTERFACIAL DZYALOSHINSKII–MORIYA INTERACTION

References

1) A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Real-Space Observation of 
Current-Driven Domain Wall Motion in Submicron Magnetic Wires, Physical Review Letter, 92, 
077205 (2004).

2) T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, and T. Shinjo, Propagation of a Magnetic 
Domain Wall in a Submicrometer Magnetic Wire, Science, 284, 468-470 (1999).

3) S. S. P. Parkin, M. Hayashi, and L. Thoms, Magnetic Domain-Wall Racetrack Memory, Science, 
320, 190-194 (2008).

4) J. Iwasaki, M. Mochizuki, and N. Nagaosa, Current-Induced Skyrmion Dynamics in Constricted 
Geometries, Nature Nanotech., 8, 742-747 (2013).

5) R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, A Strategy for 
the Design of Skyrmion Racetrack Memories, Sci. Rep., 4, 6784 (2014).

6) A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. 
Grollier, and A. Fert, Matching Domain-Wall Configuration and Spin-Orbit Torques for Efficient 
Domain-Wall Motion, Phys. Rev. B, 87, 020402(R) (2013).

7) A. Hubert and R. Schaefer, Magnetic Domains: The Analysis of Magnetic Microstructures, 
Springer, (1998).

8) S. Blundell, Magnetism in Condensed Matter (Oxford Master Series in Physics), Oxford Univ Pr, 
(2001).

9) G. S. Abo, Y-Ki Hong, J. Park, J. Lee, W. Lee, and B.-C. Choi, Definition of Magnetic Exchange 
Length, IEEE Trans. Magn., 49, 4937-4939 (2013).

10) S. Rohart and T. Thiaville, Skyrmion Confinement in Ultrathin Film Nanostructures in the 
Presence of Dzyaloshinskii-Moriya Interaction, Phys. Rev. B, 88, 184422 (2013).

11) Y. Nakatani, Y. Uesaka, and N. Hayashi, Direct Solution of the Landau-Lifshitz-Gilbert Equation 
for Micromagnetics, Jpn. J. Appl. Phys., 28, 2485 (1989).

12) G. Yu, Z. Wang, M. A.-Beygi1, C. He, X. Li, K. L. Wong, P. Nordeen, H. Wu, G. P. Carman, X. Han, I. 
A. Alhomoudi, P. K. Amiri, and K. L. Wang, Strain-induced Modulation of Perpendicular Magnetic 
Anisotropy in Ta/Cofeb/Mgo Structures Investigated by Ferromagnetic Resonance, Appl. Phys. 

Lett., 106, 072402 (2015).
13) M. D. Stiles, W. M. Saslow, M. J. Donahue, and A. Zangwill, Adiabatic Domain Wall Motion and 

Landau-Lifshitz Damping, Phys. Rev. B, 75, 214423 (2007).
14) Y. Ren, Y. L. Zuo, M. S. Si, Z. Z. Zhang, Q. Y. Jin, and S. M. Zhou, Correlation Between Ultrafast 

Demagnetization Process and Gilbert Damping in Amorphous TbFeCo Films, IEEE Trans. Magn., 
49, 3159-3162 (2013).

15) V. B. Naik, H. Meng, and R. Sbiaa, Thick CoFeB with Perpendicular Magnetic Anisotropy in 
Cofeb-Mgo Based Magnetic Tunnel Junction, AIP Advances, 2, 04282 (2012).

16) C. Bilzer, T. Devolder, J.-V. Kim, G. Counil, C. Chappert, S. Cardoso, and P. P. Freitas, Study of 
the Dynamic Magnetic Properties of Soft Cofeb Films, J. Appl. Phys., 100, 053903 (2006).

17) M. T. Rahman, X. Liu, M. Matsumoto, and A. Morisako, Compositional Dependence Of 



72 Yuki Kaiya, Syuta Honda, Hiroyoshi Itoh, and Tomokatsu Ohsawa

Magnetoresistance in Tbfeco Amorphous Film, IEEE Trans. Magn., 41, 2568-2570 (2005).


