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Abstract—In artificial Spiking Neural Networks (SNNs) the
information processing and transmission are carried out by spike
trains in a manner similar to the generic biological neurons.
Recently it has been reported that they are computationally more
powerful than the conventional neural networks. In biological
systems there are numerous examples of autonomously gener-
ated periodic activities. Several different periodic patterns are
generated simultaneously in a living body. It is known that in
biological systems there are specific neurons which generate such
periodic patterns. This paper presents a method for synthesis
of neural oscillators by spiking neural networks. We propose
a learning method for synthesizing spiking neural networks
which generate desired periodic spike trains with specified spike
emission times. We also propose a method for making the periodic
trajectory generated by the synthesized spiking neural oscillator
asymptotically stable.

Index Terms—neural oscillator, spiking neural network, syn-
thesis method, stability

I. INTRODUCTION

In biological systems there are numerous examples of

autonomously generated periodic motor activities, such as

locomotion, mastication, respiration and so on. It is known

that in biological systems there are specific neurons which

generate such periodic patterns. In engineering applications,

there are a lot of problems which require to generate periodic

patterns such as repetitive motion control of robots. Owing

to these reasons, several studies on artificial neural oscillators

have been done [1]–[3], and most of them use conventional

threshold or sigmoidal neural networks. In this paper we

present a synthesis method of artificial neural oscillator by

using spiking neural networks.

In last decades there is a surge in the research of artificial

spiking neural networks (SNNs) due to the fact that the

functions of spiking neurons are closer to the physiological

functions of the generic biological neurons than the conven-

tional threshold and sigmoidal neurons [4]–[6]. In artificial

spiking neural networks the information is encoded and pro-

cessed by the spike trains (sequence of action potentials)

similar to the biological neural networks (BNNs) through a

discontinuous and nonlinear encoding mechanism [4], [5].

The conventional neuron models usually tend to ignore these
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sophisticated discontinuous encoding mechanisms. In addition

to the SNNs’ similarity to the BNNs, recently it has been

reported that they are computationally more powerful than the

conventional artificial neural networks [6]–[8]. It is, however,

much more difficult to analyze and synthesize the SNNs than

the conventional threshold and sigmoidal neural networks.

This is due to their nonlinear and discontinuous encoding

mechanisms, which make the SNNs continuous and discrete

hybrid-dynamical-systems.

We have already proposed a learning method for synthesiz-

ing artificial neural oscillators using spiking neural networks

[9]. The method makes it possible to synthesize a spiking

neural network which generate a desired periodic trajectory.

However, the method does not guarantee stability of generated

periodic trajectories, which is an important problem, especially

for engineering applications. In this paper we propose a

synthesis method of spiking neural oscillators with ensuring

asymptotic stability of the generated periodic trajectory. The

proposed synthesis method is based on learning of neural

networks and it makes possible to synthesize a spiking neural

network which generates a desired periodic trajectory with

asymptotic stability. It is known that the stability of periodic

trajectories can be investigated by checking eigenvalues of

Jacobian matrix of the Poincaré map defined on them. In

order to make the generated periodic trajectory asymptotically

stable, we propose a learning method of neural networks

such that Jacobian matrix of the Poincaré map of generated

periodic trajectory possess specified stable eigenvalues. We

have implemented the proposed synthesis method by using

the simulator of the SNN. Numerical experiments are carried

out to check the performance of the proposed method. It is

shown that the proposed method makes it possible to realize

the spiking neural oscillators which can generate desired

asymptotically stable periodic trajectories.

II. SPIKING NEURAL NETWORKS

A. Firing Mechanism of Integrate and Fire Type Spiking
Neurons

In this paper we consider recurrent spiking neural networks

in which integrate-and-fire type spiking neurons (SNs) are

fully connected. The firing mechanism of the ith integrate-

and-fire type spiking neuron in the network is shown in Fig.1.

When an input stimulus ei(t) is fed into the integrator with
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Fig. 1. Schematic of the firing mechanism of the integrate and fire type SN.

transfer function 1/(s+ci) (timing filter), a spike is emitted at

the moment when the filter-output pi(t) reaches the threshold

value si. At the instant of spike emission the sign of the filter

output pi(t) is observed and assigned to the output spike and

the internal states of the filter are reset to zero. The firing

mechanism is mathematically described as follows.

σi(t) =

Ki∑
ki=1

εi,ki × δ(t− ti,ki) (1)

ti,ki
= min[t : t > ti,ki−1, |pi(t)| ≥ si] (2)

εi,ki = sgn[pi(t
−
i,ki

)] (3)

dpi(t)

dt
= −cipi(t) + ei(t), ti,ki−1 < t < ti,ki

(4)

pi(0) = p0i , (5)

pi(t
+
i,ki

) = 0, ki = 1, . . .Ki, (6)

where, σi(t): output sequence of spikes of the ith spiking

neuron, Ki: total number of spikes fired before time t, ti,ki
:

time at which the kthi spike is emitted, pi(t): output of the

filter, p0i : initial condition of the filter, 1/ci: time constant, si:
threshold value, ei(t): input to the spiking neuron, and pi(t

−
i,ki

)

= limε→0 pi(ti,ki − ε), pi(t
+
i,ki

) = limε→0 pi(ti,ki + ε), ε > 0.

Equation (6) represents the resetting mechanism of the SN at

spike emission times.

B. Model of Spiking Neural Networks

We consider recurrent spiking neural networks in which

integrate-and-fire type spiking neurons shown in Fig. 1 are

fully connected through synaptic weights wi,j and time delay

elements gi,j(s). Figure 2 shows a schematic diagram of the

connection of the ith spiking neuron in the recurrent SNN. We

let here the number of neurons composed in the recurrent SNN

be M . The elements gi,j(s) determine shape of post synaptic

potentials, so called spike-response function as shown in Fig.

3, or delay due to the spike transmission between spiking

neurons. Synaptic weights wi,j are added to the time delay
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Fig. 2. Model of the connections of ith spiking neuron in the SNN.
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Fig. 3. Spikes and spike-response function.

elements (wi,j × gi,j(s)). A typical example of the spike-

response function is a difference of two exponentially decaying

functions and the elements gi,j(s) is given by

gi,j(s) = κ

{
1

s+ 1/τm
− 1

s+ 1/τs

}
, 0 < τs < τm, κ > 0.

The input stimulus ei(t) of the ith SN is generated by the

weighted sum of each output yi,j(t) of the element gi,j(s),
and the external input vi(t). The input ui,j(t) of gi,j(s)
is connected with the output of the jth neuron, σj(t). The

connection topology of the entire SNN is given by

ei(t) =

M∑
j=1

wi,jyi,j(t) + vi(t), (7)

ui,j(t) = σj(t), (8)

For the convenience of the derivation of the learning algo-

rithms, the elements gi,j(s) are expressed in state space form:

dxi,j(t)

dt
= Ai,jxi,j(t) + bi,jui,j(t) (9)

yi,j(t) = ci,jxi,j(t) (10)

xi,j(0) = x0
i,j , i, j = 1, · · · ,M (11)

gi,j(s) = ci,j(sI −Ai,j)
−1bi,j ,

where xi,j(t): N dimensional state vector, x0
i,j : N dimen-

sional initial state vector and, the dimensions of the system

matrices and vectors Ai,j , bi,j and ci,j are N × N , N × 1
and 1 × N , respectively. Equations (1)∼(11) give the whole

description of the recurrent SNN considered in this paper.



III. PROPOSED SYNTHESIS METHOD

A. Synthesis Method of Spiking Neural Oscillators Generating
Desired Spike Trains

In this section we discuss a synthesis method of spiking neu-

ral oscillators by using the spiking neural network described

by (1)∼(11). The objective here is to synthesize a spiking

neural oscillator such that the spiking neural network possesses

an autonomous persistent spike-train oscillation with a given

period, and given number of spikes at given firing instants.

Let T be a desired period of the oscillation, Kd
i be a desired

number of spikes within the period, tdi,ki
(0 < tdi,1 < tdi,2 . . .

< td
i,Kd

i
< T ) be desired spike firing instants and εdi,ki

be

desired sign of the spikes. The objective is to find the values

of the synaptic weights wi,j , which realize that in the steady

state the actual firing times tai,ki
and actual sign of εai,ki

of each

spiking neuron coincide with the given desired spike firing

times tdi,ki
,

tai,ki
= tdi,ki

, ki = 1, 2, . . . ,Kd
i , i = 1, 2, . . . ,M (12)

and the given desired sign of the spikes, εai,ki
= εdi,ki

, and

satisfy the periodicity condition,

σi(t) = σi(t+ T ). (13)

Furthermore, since all the states of the spiking neural network

need be periodic, the following conditions are required.

xi,j(t) = xi,j(t+ T ), pi(t) = pi(t+ T ), (14)

(i, j = 1, 2 . . . ,M).

The objective here is to find values of the synaptic weights

wi,j such that (12), (13) and (14) are satisfied.

In order to realize the relationships (12), (13) and (14), we

define the following cost function.

J1 =
1

2

⎛
⎝α

M∑
i=1

Kd
i∑

ki=1

(tdi,ki
− tai,ki

)2 + (15)

β

M∑
i=1

M∑
j=1

N∑
n=1

(x0,n
i,j − xn

i,j(T ))
2 + γ

M∑
i=1

(p0i − pi(T ))
2

⎞
⎠ ,

where x0,n
i,j := xn

i,j(0), and α, β and γ are suitable positive

weighting coefficients. Note that in the spiking neural network,

the initial conditions which generate autonomous oscillatory

responses are unknown. Therefore it becomes necessary to

treat the initial conditions as unknown variables. The objective

is now reduced to solving the following constrained optimiza-

tion problem.

Minimize J1 (16)

w.r.t : wi,j ,x
0
i,j , p

0
i (i, j = 1, 2, . . . ,M)

subject to : Kd
i = Ka

i ,

|p0i | < si (i = 1, 2, . . . ,M),

where Ka
i is the actual number of spikes fired by the ith

spiking neuron within the period T .

B. Synthesis Method for Making Generated Periodic Trajec-
tory Asymptotically Stable

It should be noted that the synthesis method explained

above does not guarantee that the realized periodic spike trains

are stable periodic trajectories. In this section we propose a

method for making the realized periodic spike trains asymptot-

ically stable periodic trajectories. It is known that an important

tool for investigating the stability of a periodic solution of a

dynamical system is the Poincaré map, which maps the initial

values of the system state vector to those one period T later

[10]. Let z be the state vector of the spiking neural network,

defined by

z = [p1, p2, · · · , pM ,xT
1,1,x

T
1,2, · · · ,xT

M,M ]T ∈ RNs (17)

where Ns = M +N ×M ×M . Note that z(T ) is a function,

denoted by P (·), of an initial state z0 := z(0):

z(T ) = P (z0). (18)

The function P (·) corresponds to the Poincaré map. Assume

that the spiking neural network has a periodic trajectory with

period T , and we denote the periodic trajectory by z∗(t) which

satisfies the periodic condition:

z∗(T ) = P (z∗(0)) = z∗(0).

This means that a point in the periodic trajectory z∗(t) is

a fixed point of the Poincaré map. Therefore the stability

analysis of the periodic solution z∗(t) is reduced to that of

the fixed point of the Poincaré map P (·) and it is known the

following fact on the stability analysis.

Let DP (z) ∈ R(Ns)×(Ns) be the Jacobian matrix of the

Poincaré map P (·) with respect to z, defined by

DP (z) =
∂P (z)

∂z
, (19)

and let DP (z∗(0)) be the the Jacobian matrix of the Poincaré

map P (·) at the point z∗(0) of the periodic trajectory z∗(t).
It is known that the following fact on the asymptotic stability

holds [10]. The Jacobian matrix DP (z∗(0)) always has one

eigenvalue of unity and if the absolute values of the Ns − 1
other eigenvalues of DP (z∗(0)) are all less than unity (i.e.

are all inside the unit circle with its center being at the origin

in the complex plane), then the periodic trajectory z∗(t) is

asymptotically stable. By using this fact a synthesis method

which makes the generated periodic trajectory asymptotically

stable can be obtained as follows.

In order to make the generated periodic trajectory asymp-

totically stable, we propose a method for assigning all the

eigenvalues of the Jacobian matrix DP (z∗(0)) of the Poincaré

map P (·) to be at desired positions in the complex plane [11].

Let

μz∗
= {μz∗

1 , μz∗
2 , · · · , μz∗

Ns
}

be a set of desired eigenvalues which are assigned to the

matrix DP (z∗(0)). Note that if μz∗
i is a complex number,

its complex conjugate μ̄z∗
i should also be in μz∗

, and one

eigenvalue of unity should be in μz∗
. In the following, for



the sake of simplicity, DP (z∗(0)) will be abbreviated as Dz∗

(Dz∗
:= DP (z∗(0))). By using the Leverrier-Bôcher formula

[12], the Jacobian matrix Dz∗
has μz∗

= {μz∗
1 , μz∗

2 , · · · , μz∗
Ns

}
as its eigenvalues if the following relations hold:

βz∗
Ns−i = − 1

i
{tr[(Dz∗

)i] + βz∗
Ns−1tr[(D

z∗
)i−1] + · · ·

+βz∗
Ns−i+1tr[D

z∗
]} (i = 1, 2, · · · , Ns) (20)

where βz∗
i , i = 1, 2, · · · , Ns satisfy

Ns∏
i=1

(s−μz∗
i ) = βz∗

0 +βz∗
1 s+ · · ·+βz∗

Ns−1s
Ns−1 + sNs . (21)

Now we are led to define the following cost function J2:

J2 =
1

2

Ns∑
i=1

{h(Dz∗
, βz∗

i−1)}2 (22)

where

h(Dz∗
, βz∗

i−1) = − 1

i
{tr[(Dz∗

)i] + βz∗
Ns−1tr[(D

z∗
)i−1]

· · ·+ βz∗
Ns−i+1tr[D

z∗
]} − βz∗

Ns−i. (23)

Thus the problem is reduced to finding the parameters such as

wi,j , ci, Ai,j , bij and cij of the spiking neural network which

minimize J2. If this minimization succeeds and the cost func-

tion can be reduced to zero, the Jacobian matrix DP (z∗(0)) of

the Poincaré map P (·) will possess the specified eigenvalues

μz∗
. Note that the network parameters do not always exist

such that the eigenvalues of the Jacobi matrix of the Poincaré

map become equal to the specified eigenvalues μz∗
, in which

case the optimization does not succeed completely. It is

expected, however, that the eigenvalues of the Jacobian matrix

of the Poincaré map will settle inside the unit circle and the

generated periodic trajectory becomes asymptotically stable

if the absolute values of the desired eigenvalues are chosen

small enough and the objective function can be reduced small

enough by the optimization.

C. Learning Method

We have introduced two cost functions (15) and (22). In

order to minimize those two cost functions simultaneously we

define the following augmented cost function:

J = J1 + δJ2 (24)

where δ > 0 is a weighting coefficient. The objective now is

reduced to solving the following optimization problem.

Minimize J (25)

w.r.t : wi,j ,x
0
i,j , p

0
i , qi,j (i, j = 1, 2, . . . ,M)

subject to : Kd
i = Ka

i ,

|p0i | < si (i = 1, 2, . . . ,M),

where qi,j is the vector consisting of the parameters of the

spiking neural network such as ci, Ai,j , bi,j and ci,j . In

order to solve this optimization problem we use gradient based

methods, in which several useful algorithms are available: the

steepest decent algorithm, the conjugate gradient algorithm,

the quasi-Newton algorithm so on. Main problem associated

with these algorithms is the computation of the gradients of the

cost function J with respect to the decision variables wi,j , x0
i,j ,

p0i , Ai,j , bi,j and ci,j . An efficient algorithm to compute those

gradients can be derived by introducing the adjoint networks to

the spiking neural network [14]. The derivation of the gradients

is omitted here.

IV. SYNTHESIS EXAMPLE

We have implemented the proposed synthesis method by

using the simulator of the spiking neural network. In this

section we present a synthesis example to demonstrate the

applicability and performance of the proposed method. We

use a spiking neural network constructed with two spiking

neurons as shown in Fig.4. This spiking neural network has

10 state variables p1, p2, xij ∈ R2 (i, j = 1, 2), and Jacobian

matrix DP (z∗(0)) of the Poincaré map as μz∗
is the 10× 10

matrix. In solving the optimization problem (25) we choose

the weighting coefficients as α = β = γ = 1, δ = 10−5 and

qi,j as the vector consisting of c1, Ai,j . The other parameters

of the spiking neural network are chosen as: the threshold

value si = 0.8, parameters of delay elements bij = [1, 1]T ,

cij = [1,−1]. By using the proposed learning method, we

synthesize the spiking neural oscillator in such a way that

it possesses the autonomous periodic spike train with the

period T = 2.0, the number of pulses within one period

Kd
i = 2, and the spike firing times tdi,1 = 0.5 and tdi,2 = 1.5,

i = 1, 2. In order to make the generated periodic trajectory

asymptotically stable, we choose the desired eigenvalues μz∗

which are assigned to the Jacobian matrix DP (z∗(0)) of the

Poincaré map as μz∗
= (0, 0, 0, 0, 0, 0, 0, 0, 0, 1). Note that, in

the assigned eigenvalues, one eigenvalue is unity and 9 other

eigenvalues are zero, that is, are all inside the unit circle with

its center being at the origin in the complex plane.

We used the quasi-Newton algorithm (the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method) to solve the optimization

problem (25). Figure 5 shows an example of convergence

behavior of the proposed leaning method, where values of

the cost functions J versus the number of the learning it-

erations are plotted. It is observed that the proposed learning

method converges quickly. Table I shows the firing instants of

the spike trains generated by the synthesized spiking neural

network, in which the desired firing instants are also shown

for comparison. It can be seen from the table that the proposed

synthesis method successfully realizes the spike trains with

the desired firing instants. The time evolution of the state

variables p1 and p2 of the synthesized spiking neural network

for 5 periods (from t = 0 to t = 5T ) is shown in Fig. 6.

Figure 7 shows the trajectory of the synthesized spiking neural

network in the state space. The dimension of the state space

of the spiking neural network shown in Fig 4 is ten and the

trajectory shown in Fig. 7 is the one projected on to the three

dimensional state space (x1
1,1, x2

1,1, p1). It is observed from

Figs 6 and 7 that the trajectory is periodic with the period



T = 2 and synthesis method successfully realizes the desired

spiking neural oscillator.

We evaluated the eigenvalues of the Jacobian matrix of the

Poincaré map for the periodic trajectory of the synthesize

spiking neural oscillator. Table II shows the values of the

obtained eigenvalues and their absolute values, and Fig. 8

shows their positions in the complex plane. It is observed

that one eigenvalue is unity and other eigenvalues are all

inside the unit circle with its center being at the origin in

the complex plane. Therefore it can be said the proposed

method successfully make the periodic trajectory generated by

the synthesized spiking neural oscillator asymptotically stable.

To verify the stability, we solve the model equations of the

synthesized spiking neural oscillator with the initial condition

being perturbed from the periodic trajectory. The result is

shown in Figs 9 and 10; the former is the time evolution of the

state variables p1 and p2 and the latter is the trajectory in the

state space (x1
1,1, x2

1,1, p1). It can be seen that they converge to

the generated periodic trajectory, which imply that generated

periodic trajectory is asymptotically stable.
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Fig. 4. A spiking neural network constructed with two spiking neurons.

TABLE I
COMPARISON BETWEEN REALIZED FIRING INSTANTS OF THE SPIKING

NEURAL NETWORK SYNTHESIZED BY THE PROPOSED METHOD AND THEIR

DESIRED ONES.

ti,1 ti,2
Desired SN1,SN2 0.50 1.50
Realized SN1 0.5000241 1.499966
Realized SN2 0.4999817 1.500025

TABLE II
THE OBTAINED EIGENVALUES OF THE JACOBIAN MATRIX OF THE

POINCARÉ MAP FOR THE PERIODIC TRAJECTORY OF THE SYNTHESIZE

SPIKING NEURAL OSCILLATOR

Obtained Eigenvalues Absolute Values

1.00000 + 0.00000i 1.00000
0.88756 + 0.00000i 0.88756
0.09693 + 0.57869i 0.58675
0.09693− 0.57869i 0.58675
−0.37842 + 0.19385i 0.42518
−0.37842− 0.19385i 0.42518
−0.12704 + 0.22139i 0.25525
−0.12704− 0.22139i 0.25525
0.00438 + 0.00000i 0.00438
0.00504 + 0.00000i 0.00504
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Fig. 5. An example of convergence behavior of the objective function during
learning.

V. CONCLUSION

In this paper we have presented a synthesis method of

neural oscillators by spiking neural networks. Fully connected

recurrent spiking neural networks constructed with integrate-

and-fire type spiking neurons have been considered. We have

proposed a learning method which can determine values of

parameters of the spiking neural networks such that they

generate the desired periodic spike trains with the specified
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Fig. 6. The time evolution of the state variables p1 and p2 of the synthesized
spiking neural oscillator
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spike emission instants. A learning method for making the

generated periodic trajectory asymptotically stable has been

also proposed. Synthesis examples have been provided to show

the validity and performance of the proposed method.

The authors wish to express their gratitude to Tomokazu

Ueyama for his valuable discussions.
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