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Abstract
Spiral states are commonly observed in pattern formation on a sphere. Li et al.(Phys. Rev. E,

Vol. 71, 016301 [2005]) previously proposed a method to generate the spiral states by adopting

mixed modes with adjacent wavenumbers like l = l0, l0 + 1, as the initial condition of a time-

developing numerical simulation. Herein, using the Swift-Hohenberg equation as an example, we

show that Li’s empirical method can be successful only in particular regions of parameter space.

Tracing the state by a continuation method generated from the static state via three symmetry

breakings, the spiral state may be regarded as a resonant state generated by the combination of a

few degenerate unstable modes with different azimuthal wave numbers.

1. Introduction

Pattern formation on spherical geometry is observed in both physical and biological
phenomena [1]. Thermal convection driven in the earth’s outer core is an example of spher-
ical pattern formation that is potentially significant to human life via the influence of the
geomagnetic field [2]. In biological applications, the morphogenesis of tumours, viruses, and
embryos may be formulated in the context of a reaction-diffusion system, as in the case of
thermal convection. In general, subject to the isotropy (spherically homogeneous) condition,
the set of equations governing these systems should be invariant against coordinate rotation.
Therefore, inherent in the system, several unstable modes arise at the onset of the instability
of the conductive state with an increase in control parameters. Based on the linear stability
analysis of such an isotropic system, the unstable modes at the onset of the instability must
be associated with the degenerated spherical harmonics, Y m

l (θ, φ), as sinusoidal waves for
the planar homogeneous system. Thus, the 2l + 1 degenerated unstable modes may emerge
simultaneously so that a nontrivial balance between the linear growth of the unstable modes
and the relaxation of viscous diffusion will generate either a stable or unstable equilibrium
state via nonlinear mode interaction. As a result, the generated equilibrium state satisfies
either axisymmetric, tetrahedral, cubic-octahedral, or dodecahedral-icosahedral symmetry
[3].

To date, it was intuitively believed that such highly symmetric steady states would
be superior to either other less symmetric equilibria or asymmetric chaotic states in the
transitional stage. Recent numerical studies [4], however, have reported that, at the onset
of the instability, a less-symmetric equilibrium state, namely, a single-arm spiral roll state,
coexists with other highly symmetric equilibrium states and appears to be stable. Fig. 1
shows an isothermal surface of a spiral state realised in a thermal convective system between
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Fig. 1. A spiral state obtained at rin/rout = 0.5 near the critical Rayleigh number is visualised by

an isosurface of the thermal deviation from the mean temperature.

doubly concentric spherical boundaries, and Fig. 2 shows its contour plot projected in the
θ − φ plane. Li et al. [5] pointed out that the spiral states may be generated by adopting
a mixed-mode combination with adjacent azimuthal wave numbers like l = l0 and l0 + 1 as
the initial condition of transient simulations. They suggested that this initial condition may
lead to the spiral state at the parameters, where linear growth rates of both Y m1

l0
and Y m2

l0+1

(|m1| < l0 and |m2| < l0 + 1) become positive simultaneously [6] via a nontrivial balance of
the mode weight functions. In the recent numerical study on the spherical Rayleigh-Bénard
convective system [7], it has also been confirmed that the spiral state is not steady and that
the parameter range in which the solution exists is relatively restricted. Bearing in mind
that a small amount of randomness of symmetry breaking in the initial condition is common
in nature, such a less symmetric state, possibly preferred by the system, might have been
worth exploring further. In the present study, we adopt the Swift-Hohenberg equation as a
model equation to understand some of the unexpected aspects of this particular state that
have hitherto remained obscure. In this study, we define the spiral state as follows. First,
one isosurface is visualised at a certain threshold, and is path-connected in the sense of
topology. Second, the spiral state is not equivalent to a torus of topology. Strictly speaking,
the spiral pattern should be defined by resorting to the symmetries illustrated in Fig. 5.

2. Formulation

We consider a time-dependent complex order function f(t, θ, φ) with 0 ≤ θ ≤ π, 0 ≤ φ < 2π
that obeys the Swift-Hohenberg equation [8] without a quadratic term:

∂f

∂t
= [α− (1 +∇2)2]f − f 3 =: F (f) , (1)

on a sphere of radius R, where α is the bifurcation control parameter. Let us take the case of
the thick spherical shell as an example. Assuming that the velocity and temperature fields are
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Fig. 2. The contour plot of the spiral state at r = 1

2(rin + rout) shown in the Fig. 1 is expanded

in θ − φ plane. θ is the angle to the positive z-axis and φ is the angle to the positive x-axis. The

darker the colour, the cooler the temperature.

governed by the principal equation of Rayleigh-Bénard convection in spherical geometry and
are approximated as sin

(
π r−rin

rout−rin

)
+O(f 2), the equation of the order parameter, f(r, θ, φ, t),

may be described qualitatively by Eq. (1).
The spherical periodic boundary condition restricts the variety of the global patterns.

Recently, Eq. (1) was utilised to find candidate solutions to Kelvin’s problem on minimal
surfaces. According to [9], the normalized energy E associated with the equation may be
defined as

E(f) := 1

4π

∫ (−α

2
f 2 +

1

2
[(∇2 + 1)f ]2 +

1

4
f 4
)
dΩ .

It should be noted that
dE
dt

= − 1

4π

∫
(
∂f

∂t
)2dΩ ≤ 0, so that an equilibrium state achieved

by integration must be a certain steady state, which corresponds to a local minimum of
the energy in the functional space. The eigenvalue problem can be constituted from the
linearisation of the equation under the spherical periodic boundary condition with growth

rate, σ, being the corresponding eigenvalue. The sign of σ = α− (1− l(l + 1)

R2
)2 determines

the linear stability on the static state (f = 0) against the infinitesimal disturbance of
eigenfunction, which is a combination of the spherical harmonics Y m

l (θ, φ). Thus, we define
the critical growth rate as:

αcr(l, R) :=
(
1− l(l + 1)

R2

)2
.

In other words, the static state at (R,α) may be unstable against multiple Y m
l s with (l,m),

that satisfy αcr(l, R) < α (see Fig. 3).
Taking the governing equation as a set of simultaneous differential equations for fl,m, the

time development of the state was calculated using the Runge-Kutta method, with the aid of
the numerical library on spherical harmonics [10, 11] utilising the Gauss-Lobatto collocation
method. Generally speaking, the time-varying scalar field on the sphere is written as the
superposition of spherical harmonics,

f(θ, φ) =
∑
l,m

fl,m(t)Y
m
l (θ, φ) ,
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Fig. 3. (a) Neutral curves of the static state, α = αl(R), on which the static state is neutral

to a disturbance of the l-th degree spherical harmonic functions, are indicated as dashed curves

with different l. Thus, for a fixed value of R, the static state is asymptotically stable against any

infinitesimal disturbance at α < αmin(R) := min{αcr(l, R); l = 1, 2, · · · }, and otherwise unstable.

The triangle symbol plotted at (R,α) = (4, 0.3) indicates the parameters, where a steady single-

arm spiral state was obtained numerically by the Newton-Raphson scheme. A spiral state can be

numerically found above the solid curve. (b) The second figure schematically depicts the procedure

undertaken to obtain the nonlinear spiral states.
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Fig. 4. Enlarged figure of the range of 3.98 < R < 4.06, 0.04 < α < 0.12 in Fig. 3

with, in general, time dependent weight functions fl,m(t).

We employ the Newton-Raphson method to numerically identify the steady state fs
satisfying F (fs) = 0 in Eq. (1). Here, we refer to the n-th approximated state as f (n)

(n = 0, 1, · · · ). Assuming that f (n) is sufficiently close to the solution fs, the Taylor expansion
of F around f = f (n) is F (fs) = F (f (n)) + F �(f (n))(fs − f (n)) + O(|f (n) − fs|2), where F (fs)
and the higher order term can be regarded as zero. Symbolically replacing f (n)−fs with Δf ,
F � by the Jacobian matrix A, and F (f (n)) by b, the method is equivalent to algebraically
solving AΔf = −b to obtain f (n+1) and then replacing f (n+1) to f (n) iteratively. Expecting
that |F (f (n))| < |F (f (n)|, we obtain fs from F (f (n)) → 0 within a tolerance factor.

3. Methodology

Since f is a real valued function, fl,−m = f ∗
l,m is satisfied, with fl,0 as purely real. Eq. (1)

is invariant with respect to rotations SO3 of the coordinate system as well as the reflection
f → −f , since Eq. (1) is constituted only by linear and cubic terms. The calculations are
simplified by taking into account the symmetry satisfied by the spiral state, f(π− θ,−φ) =
−f(θ, φ) and f(θ, π + φ) = f(θ, φ). While the former is termed as the parity symmetry
on the x-axis, which fixes the phase of the spiral state around the z-axis to locate the tips
of the spiral arm on the x-axis, the latter is the two-fold symmetry of the spiral state on
the z-axis. The parity and two-fold symmetries are equivalent to f ∗

l,m = (−1)lfl,m and
fl,m = (−1)mfl,m, respectively. These symmetries are followed by an alternative symmetry
f(θ, π

2
− φ) = −f(π − θ, π

2
+ φ) that is automatically satisfied, which may be termed as the

parity symmetry on the y-axis.
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Fig. 5. (a) (R,α) = (4.05, 0.05), (b) (R,α) = (4.04, 0.09), and (c) (R,α) = (4.03, 0.10), correspond

to the filled triangle, filled circle, and open circle symbols in Fig. 4, respectively.

4. Results

We have obtained some spiral state candidates from the numerical simulation at (R,α) =
(4, 0.3). One of them was numerically obtained using the Newton-Raphson techniques sub-
ject to the symmetries explained above, which are indicated by the open triangle symbol
in Fig. 3. Adopting this spiral state as a seed, the Newton-Raphson method allowed us to
adiabatically trace the spiral state in the parameter space, step by step by increasing or
decreasing the values of these parameters (R,α). The thick solid curve in the figure is a
boundary, out of which a seed used by Newton-Raphson does not converge to the spiral
state in 256 iterations. The procedure to obtain this boundary curve is as follows: (1) We
traced the spiral state by decreasing α sequentially from the converged spiral state at the
open triangle symbol of Fig. 4, (2) We determined the (i+ 1)-th parameter (Ri+1, αi+1) for
the unsolved spiral state to be (Ri +ΔR,αi +Δα) from the i-th parameter (Ri, αi) for the
solved spiral state. Here, ΔR and Δα are both small values O(10−3). (3) We iterated using
the Newton-Raphson method, unless the calculation converges within 256 iterations. Next,
some changes (ΔR,Δα) were introduced towards the left-hand (or right-hand) turning di-
rection by a small angle, (4) We increased i and returned to the second step of our process.
The algorithm is similar to a person trying to move forward in the dark with his right (or
left) hand continuously touching the wall.

The shape of the boundary above the spiral state that can be numerically found is like
a series of bumpy mountains. It should be noted that a valley of adjacent mountains is
close to intersections of neutral curves with a couple of adjacent azimuthal wave numbers,
for example l = 3, 4 or l = 4, 5, where the spiral state could be obtained at relatively low
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Fig. 6. Different spiral states converged at (R,α) = (6, 0.18) (open square symbol in Fig. 3).

α without difficulty. In other words, the spiral state may have its bifurcation origin at
the intersections of neutral curves by adopting a mixed-mode combination with adjacent
azimuthal wave numbers. This is reminiscent of the fact that, previously, the spiral states
could be generated by adopting mixed modes with adjacent wave numbers l = l0, l0 + 1 as
the initial condition of the time-developing numerical simulation [5].

Fig. 4 shows that the corner of the boundary approaches the intersection of the neutral
curves with adjacent azimuthal wave numbers, l = 3 and 4. We investigated the details
of the bifurcation behaviour of the spiral state around the origin as follows. Adopting the
spiral state obtained at (R,α) = (4.03, 0.102) (indicated by the filled triangle symbol) as
a seed, we obtained the two converged states at (R,α) = (4.04, 0.087) and (4.05, 0.050), as
indicated by the filled circle and the open circle in the figure. The contour plots of the first,
second, and third states are illustrated in Fig. 5(a), (b), and (c), respectively. The first state
(filled triangle symbol) satisfies only the parity symmetry with respect to the x-axis and the
twofold symmetry with respect to the z-axis. The second state (filled circle symbol) satisfies
not only these two symmetries but also another independent symmetry, namely, the anti-
reflection symmetry on the x-z plane, f(θ, φ) = −f(θ,−φ) , as illustrated in Fig. 5(b). The
third state (open circle symbol) satisfies not only these three symmetries but also another
independent symmetry, namely, the threefold symmetry with respect to the y-axis. Note
that the y-axis corresponds to (φ

π
, θ
π
) = (0.5,0.5) or (1.5,0.5). Thus, the spiral state may

generate from the static state via three symmetry breakings.

5. Concluding remarks

It is known that spiral states are commonly observed in pattern formation on a sphere. Using
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the Swift-Hohenberg equation, we showed that Li’s empirical method can be successful only
in particular regions of parameter space. The spiral state in pattern formation in spherical
geometry may be considered as a resonance generated by a few degenerated unstable modes
with different azimuthal wavenumbers [12, 13].

Here, we present an example of a low-dimensional dynamical model in that an equilibrium
state bifurcates from the degenerated unstable modes. Provided that a dynamical system
(x(t), y(t)) obeys ẋ = (α−R)x− x3, ẏ = (α−R)y− y3, the equilibrium state of the system

that produces the stable resonant state is given as (x, y) = (±√
α−R,±√

α− (1−R)) for
both R < α and 1− R < α. Originating at the intersection of the neutral lines α = R and
α = 1−R, this state extends in a delta area between the lines.

We confirmed that several different spiral states coexist at the parameter (R,α) =
(6.0, 0.18). The initial condition of fl,m(t) selects one of the three patterns. The obtained
spiral states are illustrated as a contour plot in Fig. 6. It should be noted that each spiral
state may have a different range of existence in parameter space; in other words, there are
multiple boundaries described as solid curves in Fig. 3 for every spiral state.
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