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論題：”Studies on Physical and Chemical Property of ZnO Films and their Stability” 

（ZnO薄膜の物理学的及び化学的特性とその安定性に関する研究） 

 

論文概要 

 

２０世紀後半のエネルギー消費を支えた化石燃料の消耗が危惧されて以来、安定な代替えエネルギー

源として原子力発電がクリーン・エネルギーとして有望視され、世界中で原子炉の建設が進んだ。他方

で、再生可能エネルギー源として太陽電池の研究も着実に進められてきた。 

日本においても、同様の潮流が続き、国内に数十基の原子炉を抱えている。しかしながら２０１１年

３月の東日本大震災で被災した東京電力福島第一原発のメルトダウン事故を契機に、原子力発電の安全

性に対する危惧と総コストに対する考え方の見直し議論を経て、国内では原子力エネルギーへの依存度

を削減する方向で施策が変更されようとしている。 

日本では、再生エネルギー技術の一つとして風力発電所の建設も進んでいるが、歴史的背景を踏まえ

た技術成熟度からみてソーラーパワーの活用が現実的であるとみられている。今世紀に入ってから家庭

用の発電システムの低価格化が進み、政府の電力買い上げ政策も進められてきた。それゆえ、時間はか

かるものの、着実に普及が進むと予測される。 

このような背景にあって、ソーラーパネルのエネルギー収率を高めるために透明電極が当たり前のよ

うに適用されてきたが、従来の主たる素材である ITOの毒性が指摘されてから代替え電極材料の研究が

加速されてきた。典型的な材料として亜鉛酸化物（ZnO）が取り上げられ、膜の低抵抗化の検討が広く

行われてきた。元々ZnOは古くから知られているセラミック半導体であり、その物理学的、化学的性質

などはよく理解されていると考えられていた。従って低抵抗化のためのドーピング手法も早期に解決し、

技術的課題は少ないと考えられてきた。しかしながら、ZnO膜の伝導を担う電子の発生機構について解

釈が不明瞭であり、酸素空孔との関係が第一原理計算によっても明らかにはされていない。 

それゆえ、今後の透明電極材料としての技術的発展を確かなものにするためには、基本的な伝導機構

の解明が不可欠であり、この点の解明は十分に価値のある研究課題であるといえる。 

上記のような学術的背景に基づき、本学位論文では、いくつかの手法によってノンドープ ZnO膜（以

下単に ZnO 膜と呼ぶ）と Al ドープ ZnO 膜（以下 AZO 膜と呼ぶ）を形成して膜の物理的及び化学的性

質を評価しながら、伝導機構を支配している本質に迫る。 

第一章では、本学位論文の位置づけとして研究の背景が述べられている。 

第二章では、ZnO 膜および AZO 膜形成技術としてスピンコート法とスパッタ法の基本的な考え方を

説明すると共に、本論文で採用した具体的な成膜条件などについても、その特徴を説明している。 

第三章では、最初に検討したスピンコート法によって形成した ZnO膜と AZO 膜の電気的、光学的な



 

 

 

 

特性が成膜条件によってどのように変化し、好ましい特性を得るにはどのような成膜条件が不可欠であ

るかを議論している。熱処理雰囲気と熱処理温度条件の選択が共に重要な意味を持つことが明らかにさ

れるが、十分な光学的透過特性が得にくいことも示されている。 

第四章では、スパッタ法によって形成した ZnO 膜の電気的特性が決まる機構を詳細に調べている。ド

ーピングによる電気的特性の制御以前に、そもそもノンドープ ZnO 膜の電気伝導特性がどのように決

まるかが必ずしも明確にされていないことから、伝導性の制御にはこの点を明らかにする努力が不可欠

であると考え、物理学的、或いは化学的な分析によって薄膜の伝導機構を調べている。 

伝導機構を支える主要パラメータの一つとして膜中の電子濃度に注目し、酸素空孔の発生が電子生成

をもたらすとされる従来からの考え方がどの程度適切かを酸素の化学的結合状態の分析を通じて考察

している。ZnO 膜の堆積条件とその後の熱処理によって膜中の酸素量に大きな変化がないにもかかわら

ず、膜中の電子濃度が製造条件に依存して著しく変化することが明らかとなった。この事実は、膜中酸

素空孔量と膜中酸素濃度が直接関係するであろうとする従来の考え方に疑問を抱かせる。この点を XPS

法により O1sスペクトルの解析から明らかにしようとしたが、従来の二成分分解法では、O1sのサブス

ペクトル強度と電子濃度に全く対応関係が存在しないことが明確になり、最近注目されている三成分分

解法挑戦している。O1s スペクトル成分強度と電子濃度は逆の関係にあり、当初この成分が酸素空孔量

に関係するとされたすでに公表された解釈は矛盾することを明らかにしている。むしろ、ZnO 膜のマト

リクス構造中の酸素イオン（O2-）に関係づけられるとする考え方のほうが適切であることが想定された。

根拠は、ZnO 膜堆積時に雰囲気として安定酸素同位体(O18)を使った実験により与えられた。即ち、当初

ZnO を構成していた O18は、堆積後に N2雰囲気の熱処理を行っても O2雰囲気の熱処理を行っても減少

する。他方で同時に存在する O16はいずれの場合も減少しない。N2雰囲気熱処理を行った ZnO膜は電子

濃度が最も高く、O2雰囲気熱処理を行った ZnO 膜は電子濃度が最も低い。したがって、ZnO 膜中の O18

の減少は酸素空孔の発生増加だけを意味するわけではなく、ZnO から酸素原子が構造的にイオン化離脱

していることを強く示唆している。これは、同位体酸素を使った今回の実験で初めて明らかにした。 

第五章では、スパッタ法により堆積した ZnO 膜の長時間大気暴露による電気的特性の安定性を評価

している。約１か月の暴露によって製造条件の異なる ZnO 膜の電気的特性を詳細に調べた結果、膜内部

の化学的結合状態、膜の組成を含めて大きな変化が現れず、安定な特性を保持できることが明らかとな

り、スパッタ法による ZnO 膜の良好な特性を確認している。 

第六章では、前章までに述べてきた事柄を全体として整理している。 
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Chapter 1.  BACKGROUND OF THE STUDY 

 

1.1 Current Status of Electrical Energy 

Electric energy is always produced through some form of energy conversion; energy is converted from one 

form such as potential energy, kinetic energy, or chemical energy into electricity [1].  

 

1.1.1 Sources of energy  

Electricity is produced by converting energy from one form into electricity. This conversion may involve 

mass-less conversion, where the energy source is converted directly into electricity. For example, solar 

photovoltaic cells convert the energy present in solar radiation, directly into electricity [2]. On the other hand, 

the mass conversion process utilizes the energy present in one form, via an intermediate form, into electricity. 

Coal-plants are well-known example of the mass process, where the coal is burnt to access its chemical energy 

which used to raise the kinetic energy of rotating steam turbines which tapped to generate electricity electro-

magnetically [3]. The majority of electricity today is produced by some form of mass energy conversion 

process [4]. Mass-less and mass-based systems use the following major sources of energy for the production 

of electricity: fossil fuels, uranium fuel, solar radiation, and hydroenergy [5]. 

Fossil fuels include coal, petroleum, and natural gas, all of which are basically finite, non-renewable 

resources. They are modern primary sources for the production of electricity. The combustion of these fuels 

releases their chemical energy, which produces heat to drive steam turbines and their attached electric 

generators, resulting in the conversion of kinetic energy into electricity [6]. No energy conversion process is 

available that converts all the energy present in one form completely into the desired form of electricity. Since 

the production of electricity from fossil fuels involves several physical and energy conversion steps, fossil fuel 

power plants are inefficient at producing power (at most around 40%). Table 1.1 summarizes the energy 

content of fossil fuels and an estimation of current fossil fuel reserves in the world [7]. 
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Table 1.1 Estimate of Fossil-Fuel Energy Content and World Fossil Fuel Reserve [7] 
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We must also consider the environmental effects of generating electricity from fossil fuels. For example, 

flyash, which is the physical matter left after coal combustion, is dangerous to not only our health, but also to 

many animals and the environment [8]. Disposing of flyash in an environmentally friendly manner is extremely 

difficult. Combusting fossil fuels also produces carbon monoxide, carbon dioxide, sulfur dioxide, and other 

harmful gases [9]. It is anticipated that these "greenhouse gases" contribute to generation of acid rain and 

global warming [10]. 

Nuclear energy, like fossil fuels, is a finite, non-renewable energy source that applies a mass conversion 

process to produce electricity [11]. There are two basic forms of nuclear energy, fission and fusion [12]. Since 

the fusion technique is not yet viable for producing electricity, only fission is used to produce electricity. The 

fission reaction involves splitting the nuclei of heavy elements. The thermal energy release by these nuclear 

reactions powers steam turbines with attendant electric generators, just as in a fossil fuel power plant. Nuclear 

fission has greater energy density than fossil fuels. Uranium effectively contains energy of approximately 1010 

Btu/kg, which is about one million times higher than the chemical energy of fossil fuels [13]. There is an 

estimated reserve of approximately 426 million kg of uranium in the United States. Nuclear fission also comes 

with heavy environmental costs and risks. The fission process leaves toxic blend of nuclear fuel, the reactor 

vessel containing the fission process and the steam pipes become highly radioactive. In addition, plant failures 

can lead to the release of radioactive steam and particulates into the atmosphere or worse. 

Many energy sources are used to produce our current diverse range of electrical sources. Non-renewable 

energy source includes nuclear and fossil fuels. Renewable energy sources range from direct solar 

(photovoltaic cells) to more indirect solar (steam production by solar heating) and geothermal energy. Most 

renewable sources are site specific, such as hydroelectricity, wind power, and tidal power [14]. All renewable 

energy sources have some of handicap or another, and the social good comes with costs to the environment 

and the future. 

 

1.1.2 Environmental impact of electricity generation 
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All methods used to produce electricity today have one or more environmental impacts [15]. The impact 

may be active like the emission of airborne pollutants, or may be passive like aesthetics or habitat modification. 

Electricity generation must be reconsidered in light of the environmental impact possible. This includes the 

production and transportation of fuel used in the conversion process [16]. This thesis focuses on the 

environmental impact of electricity production. Such impacts are most obvious with fossil fuel and nuclear 

power plants, which extract large quantities of fuel from the earth. Power plant emissions of typical methods, 

which are discussed below, are summarized in Figure 1.1 [17]. 
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Figure 1.1. Power Plant Emissions (Tones CO2/GWh) [17] 
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Coal Production 

Coal is almost exclusively mined for generating electricity. Coal production is often viewed as just a local 

environmental problem. Coal mining, particularly surface mining, has both long-term and short-term effects 

on the land, including dust, noise, and water drainage/runoff. The preparation of coal produces huge quantities 

of solid and liquid wastes, which must be chemically treated and disposed of safely.  

 

Oil Production 

The fuel oil burned in power plants is a byproduct of the petroleum industry, so electricity production is 

partially responsible for the environmental issues associated with the consumption of oil and hydrocarbon. 

Burning fuel oil produces many "greenhouse" gases. Other environmental impacts associated with oil 

production include blowouts, spills, brine disposal, ground instability, and the production of hydrogen sulfide. 

 

Natural Gas Production 

During natural gas production, possible damages to the environment include blowouts, leaks, hydrocarbon 

emissions, and trace metal emissions. The treatment of natural gas yields air emissions and the disposal of 

liquid residuals, while transportation and storage effects include spills and explosions. 

 

1.1.3 Green Energy Source - Solar Cell 

Solar radiation is a renewable energy source. The average incident power at the earth's surface is 182 W/m2, 

which corresponds to a daily average energy supply of 4.4 kWh/m2 [18]. Direct use of solar power includes 

active systems involving photovoltaic cells, and passive systems that use solar collectors to gather radiation 

and raise steam. Photovoltaic cells directly convert sunlight into electricity. The best photovoltaic cells to date 

have efficiencies in the 14% to 17% range [19]. Environmentally attractive, they have no emissions, minimal 

wasteful by-products, and minimal mass utilization. However, the most efficient solar cells use gallium 

arsenide, a toxic material [20]. It seems that solar cells are too new for a proper understanding of the disposal 

requirements and costs posed by worn out cells. In addition, photovoltaic solar cells generate direct current, 
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and hence require invertors to obtain the alternating current desired for most large-scale consumers [21]. Solar 

collectors are normally incorporated into a solar thermal system, converting sunlight into heat for various forms 

of use, including space heating, water heating, industrial process steam generation, and electricity production 

[22]. At present, several factors limit the large-scale utilization of solar energy, including the cost of solar cells 

and solar collector-heat exchanger systems, maintenance costs, and the need for adequate energy storage 

systems that can smooth out the daily variation. Yet, sunlight is found everywhere, making the use of solar 

radiation for energy production non-site specific. 

The production of electricity from solar energy sources generally has only a small effect on the environment 

[23]. The energy conversion process has no by-products. Solar thermal systems are the sole exception as they 

have an operating fluid that must occasionally be replaced and the spent fluid discharged. There are some 

environmental concerns, however. Bulk solar plants generally require a large land area, and they tend to create 

heat islands. An unknown factor in solar energy is the disposal of photovoltaic cells. While the positives of 

photovoltaic cells far outweigh their negatives, continuous effort is needed to keep enhancing their efficiency 

and performance. Transparent conducting oxides (TCO), which are utilized as transparent electrodes in many 

types of thin film solar cells, are key determiners of both efficiency and performance.  

TCO systems are found in Si thin film solar cells, such as CdTe thin film solar cells, and CIGS thin film 

solar cells [24]. For example, in Si thin film solar cells [25], as illustrated in Fig.1.2, the light trapping allows 

the thickness of the Si absorber layer to be reduced which paves the way for increased device stability. 

Therefore, using TCO layers as transparent electrodes in Si solar cells is a key step in raising device 

performance. Details of TCO characteristics are given below. 
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Figure 1.2. A schematic sketch of a Si solar cell with front and back TCO contact layers [25]. 
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1.2 Properties of Transparent Conductive Oxides (TCO) 

Transparent conductive oxides (TCO), most often doped metal oxides, are used in optoelectronic devices 

such as flat panel displays and photovoltaic devices (including inorganic devices, organic devices, and dye-

sensitized solar cells) because of they are transparent at visible wavelengths and have high electrical 

conductivity [26]. Most fabricated films have polycrystalline or amorphous microstructures. Typically used as 

electrode materials, they offer over 80% transmittance of incident light as well as electrical conductivity values 

higher than 103 S/cm and so permit efficient carrier transport [27]. In general, TCOs for thin-film electrodes 

in solar cells should have minimum carrier concentrations of the order of 1020 cm−3 for low resistivity with 

bandgaps greater than 3.2 eV to avoid the absorption of light over most of the solar spectrum [28].  Carrier 

mobility in these films is usually limited by ionized impurity scattering due to the large numbers of ionized 

donors in the film and is at most 40 cm2/V/s for the best TCOs. Current transparent conductive oxides used in 

industry are primarily n-type conductors, meaning that the primary carriers are electrons. This is because 

electron mobility is usually higher than hole mobility, and the difficulty of finding shallow acceptors in wide 

band gap oxides that can permit high hole concentrations.  Suitable p-type transparent conductive oxides are 

still being researched, but the best of them still lies orders of magnitude behind n-type TCOs [29]. 

Today, the most important TCO material for electrode applications is In2O3, and the typical dopant is tin 

(In2O3:Sn = ITO). Tin-doped In2O3-based TCOs are been found to possess very good electrical and optical 

properties [30]. The smallest resistivity of Sn-doped In2O3 (ITO) is just below 10-4 Ωcm in the laboratory, with 

typical resistivity being about 1x10-4 Ωcm.  The transparency is primarily ruled by the optical band gap, which 

is ≥3.3 eV, leading to transparency for wavelengths >360 nm. However, since In is a toxic material and very 

expensive (it is a rare metal), a search for alternative TCO films comparable to or better than ITO continues 

unabated [31]. 

Turning our attention to up and coming alternatives to ITO, we find ZnO (zinc oxide). It has an electron 

affinity of 4.35 eV and a direct band gap energy of 3.28 eV and is an n-type semiconductor material with the 

residual electron concentration of ~1017 cm−3 [32].  As doped ZnO films have been assumed to have very 

attractive electrical and optical properties for electrode applications, many dopants have been studied for ZnO-
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based binary TCOs; i.e., Ga, Al, B, In, Y, Sc, V, Si, Ge, Ti, Zr, Hf, and F have been examined [33].  

Advantages of ZnO-based TCOs are low cost, abundant material resources, and non-toxicity.  At present, 

ZnO films heavily doped with Ga and Al (dubbed GZO and AZO) have been demonstrated to have low 

resistivity and high transparency in the visible spectral range and, in some cases, even outperform ITO and 

FTO [34]. The dopant concentration in GZO or AZO usually lies in the range of 1020 to 1021 cm−3.  Although 

we have obtained GZO films with mobility of ~95 cm2/V/s in our laboratory, the typical mobility of GZO films 

reported is near or slightly below 50 cm2/V/s.  Ionization energies of Al and Ga donors (in the dilute limit 

which decreases with increased doping) are 53 and 55 meV, respectively, which are slightly lower than that of 

In (63 meV).  Agura et al. reported a very low resistivity of ~8.5×10−5 Ωcm for AZO, and Park et al. reported 

a resistivity of ~8.1×10−5 Ωcm for GZO, both of which are similar to the lowest reported resistivity of ~7.7×10−5 

Ωcm for ITO. AZO and GZO films can easily achieve transmittance values of 90% or more, which is 

comparable to the best value reported for ITO optimized for transparency alone, and far exceeds that of the 

traditional semitransparent thin Ni/Au metal electrodes (transmittance is below 70% in visible wavelengths) 

[35]. The high transparency of AZO and GZO originates from the wide band gap of ZnO.  Low growth 

temperature of AZO or GZO has also intrigued researchers with respect to transparent electrode applications 

in solar cells. Compared to ITO, ZnO-based TCOs show better thermal stability of resistivity and better 

chemical stability at high temperatures, both of which bode well for the optoelectronic devices in which this 

material would be used [36].  In short, AZO and GZO are TCOs attracting more attention, if not the most, as 

ITO replacements.  From the viewpoints of cost, availability, and environmental impact, AZO appears to be 

the best candidate.  This conclusion is also bolstered by the availability of batch production of AZO films 

allowing large-area and large-scale production. 

 

1.3 The Purpose of this Dissertation 

Starting with an eye on production economies, I attempted to spin-coat ZnO and Al doped ZnO (AZO) thin 

films and tried to optimize the deposition and annealing conditions to achieve films with the best physical 

properties for TCO applications. Interestingly, I found that the films deposited by spin-coating had very higher 
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resistivity values making them unsuitable for TCO use.  Since the reason for the high resistivity was not clear, 

I shifted the research target to the fundamental mechanism of carrier generation in ZnO films.  I chose the RF 

sputtering method to get uniform and low resistivity films. 

As the primary aim of the experiments was to elucidate the dominant mechanism controlling the electrical 

property of undoped ZnO films and impurity-doped ZnO films, it was necessary to clearly identify the 

structural aspects of undoped ZnO films.  In some cases, I regarded the measured chemical and physical 

properties of ZnO as only rough estimates, rather than highly reliable values. Since the characteristics of ZnO 

films are expected to depend on fabrication conditions, I carefully investigated the various factors that might 

modify the structure and property of the films. 

For this I characterized the oxygen-bonding state by X-ray photoelectron spectroscopy (XPS).  In this 

dissertation, I propose an advanced method to characterize the relation between the oxygen-related spectrum 

component and the electron concentration.  The relation between oxygen-bonding states and oxygen vacancy 

generation is discussed from various viewpoints of the films’ electrical property.  In addition, I trace the 

evolution of the in-depth concentration profile of oxygen isotope atoms captured by the ZnO films during 

deposition in order to elucidate how oxygen atoms and oxygen vacancies behave and contribute to electron 

generation.  I reveal how the annealing condition after deposition changes the in-depth profile of oxygen 

atoms. 

 

 

 

 

 

 

 

 

 

 

 

 



Grad. School of Sci. and Eng., Kansai University 

 

- 12 - 

 

Chapter 2. THE DEPOSITION METHOD OF ZnO FILMS 

  ZnO films can be prepared by different techniques such as spray pyrolysis [37], pulse laser deposition [38], 

chemical vapor deposition [39], sol-gel [40] and magnetron sputtering methods [41]. In this Chapter, I will 

introduce the spin-coating method and the sputtering method both which were used in my research. 

 

2.1 Spin-coating Method 

  The spin coating method is one of the most well-known techniques for applying thin films to substrates and 

is used in a wide variety of industries and technology sectors. The use of spin coating in organic electronics 

and nanotechnology is widespread and has built upon many of the techniques used in other semiconductor 

industries but also has some differences due to the relatively thin films. They include the high uniformity 

needed for effective device preparation, as well as the need for self-assembly and organization to occur during 

the casting process [42]. 

Spin coating generally involves the application of a thin film (a few nm to a few m) evenly across the 

surface of the substrate by coating (casting) a solution of the desired material in a solvent while the substrate 

is rotated. The standard process is shown in Figure 2.1 [43].  First the substrate is coated in an ink containing 

the desired molecules dissolved in a solvent (1).  The substrate is then rotated at high speed and most of the 

ink is flung off the sides (2).  Airflow then removes most of the solvent leaving a plasticized film (3) before 

the film fully dries leaving the molecules on the surface (4). 

The advantages of spin coating are its simplicity and relative ease with which a process can be set up coupled 

with the thin and uniform coatings that can be achieved. High spin speeds enhance the airflow yielding drying 

times which in turn results in high consistency at both macroscopic and nanometer scales. The disadvantage 

of spin coating is that it is an inherently batch (single substrate) process and thus relatively low throughput 

compared to roll-to-roll processes. The fast drying times can also lead to lower performance for some particular 

nano-technologies (small molecule OFETs for example) which require time to self-assemble and/or crystallize.  
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Figure 2.1. Example of spin coating a small molecule in solution using a static dispense [43].  
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Finally, material usage efficiency is typically very low at around 10% or less with most material being flung 

off the sides and wasted [44]. Whilst this is not usually an issue in research, it is clearly wasteful for 

manufacturing. 

  In general, the thickness of a spin coated film is proportional to the inverse of the spin speed squared as in 

the following equation, where t is the thickness and ω is the angular velocity [45]: 

 

t ∝  
𝟏

√𝝎
                                                     (2.1) 

 

This means that film thickness will be halved if the rotation speed is quadrupled.  A spin curve can also be 

calculated from this equation as follows.  The exact thickness of a film will depend upon the material 

concentration and solvent evaporation rate (which in turn depends upon the solvent viscosity, vapor pressure, 

temperature and local humidity) and so for this reason, spin vs. thickness curves for new inks are most 

commonly determined empirically.  Typically a test film is spin coated and the thickness is measured either 

by ellipsometry or surface profilometry.  From this one or more data points, the spin vs. thickness curve can 

be calculated - usually with a good degree of accuracy.  The spin speed can then be adjusted to give the 

desired film thickness. 

In this experiment, I used the spin-coating method to obtain ZnO and AZO films. The Al/Zn atomic ratio of 

the AZO film in this solution was 1/50.  The process of deposition is drawn in Figure 2.2.  At first, the 

substrates were cleaned using the sequence of deionized water, methanol, acetone and deionized water by 

ultrasonic cleaning machine.  Spin-coating was performed at room temperature, with a rate of 500 rpm for 5 

sec and 2000 rpm for 20 sec.  The deposited films were preheated at 120°C for 2 min and then were annealed 

at 500, 600, 700, or 800°C using an electric furnace for 60 min under an atmosphere of air and oxygen gas.  

The same coating process was repeated 9 times to obtain relatively uniform thick films [46]. 
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Figure 2.2. The process of spin-coating method [46] 
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2.2 Sputtering Method 

 Sputter deposition creates thin films by physical vapor deposition (PVD) [47]. This involves ejecting 

material from a "target", the source, onto a "substrate" such as a silicon wafer.  Resputtering is re-emission of 

the deposited material during the deposition process by ion or atom bombardment. Sputtered atoms ejected 

from the target have a wide energy distribution, typically up to tens of eV (100,000 K). The sputtered ions 

(typically only a small fraction of the ejected particles are ionized — on the order of 1%) can ballistically fly 

from the target in straight lines and energetically impact the substrates or vacuum chamber walls (causing 

resputtering). Alternatively, at higher gas pressures, the ions collide with the gas atoms that act as a moderator 

and move diffusively, reaching the substrates or vacuum chamber wall and condensing after undergoing a 

random walk. The entire range of physical effects from high-energy ballistic impact to low-energy thermalized 

motion is accessible by changing the background gas pressure. The sputtering gas is often an inert gas such as 

argon. For efficient momentum transfer, the atomic weight of the sputtering gas should be close to the atomic 

weight of the target, so for sputtering light elements neon (Ne) is preferable, while for heavy elements krypton 

or xenon are used. Reactive gases can also be used to sputter compounds. The compound can be formed on 

the target surface, in-flight or on the substrate depending on the process parameters. The many parameters that 

control sputter deposition make it a complex process, but also allow experts a large degree of control over the 

growth and microstructure of the film [48]. 

Compared with other deposition methods, an important advantage of sputter deposition is that even materials 

with very high melting points can be easily formed as films whereas the evaporation of these materials in a 

resistance evaporator or Knudsen cell is problematic or impossible. Sputter deposited films have a composition 

close to that of the source material. The difference is due to different elements spreading differently because 

of their different mass (light elements are deflected more easily by the gas) but this difference is constant. 

Sputtered films typically have better adhesion to the substrate than evaporated films. The target contains a 

large amount of material and is maintenance free making the technique suited for ultrahigh vacuum 

applications. Sputtering sources contain no hot parts (to avoid heating they are typically water cooled) and are  
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Figure 2.3. An example of sputtering deposition of ZnO by DC sputtering of a metallic Zn target in an Ar/O2 

atmosphere [48]. 
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compatible with reactive gases such as oxygen. Sputtering can be performed top-down while evaporation must 

be performed bottom-up. Advanced processes such as epitaxial growth are possible. 

Some disadvantages of the sputtering process are that the process is more difficult to combine with a lift-off 

for structuring the film [49]. This is because the diffuse transport, characteristic of sputtering, makes a full 

shadow impossible. Thus, one cannot fully restrict where the atoms go, which can lead to contamination 

problems.  In addition, an active control for layer-by-layer growth is difficult to implement compared to 

pulsed laser deposition and inert sputtering gases enter the film as it is deposited as impurities.  Pulsed laser 

deposition is a variant of the sputtering deposition technique in which a laser beam is used for sputtering. The 

role of the sputtered and resputtered ions and the background gas has been fully investigated for the pulsed 

laser deposition process. 

The simplest approach for the deposition of ZnO films by sputtering is sketched in Figure 2.3 [48]: A DC 

glow discharge is formed between a cathode, which is a planar Zn target, and the anode, which is the camber 

of the vacuum system. The system is pumped to a pressure of ~10 Pa and Ar and O2 gasses are introduced into 

the vacuum chamber. 

In this experiment, the substrate has a 100-nm-thick top SiO2 film on a (001) p-type Si wafer.  Before 

depositing the ZnO films, the substrates were chemically cleaned with sulfuric acid and hydrogen peroxide 

liquid for 3 min, followed by a rinse with de-ionized water. ZnO films were deposited on the top 100-nm-thick 

SiO2 film by the RF sputtering technique. The RF power density was 1.99 W/cm2. The distance between the 

substrate and the ZnO target was 50 mm. The base pressure was below 4x10-3 Pa. The ambient gas was 

composed of pure Ar or a mixture of Ar and O2 gases (Ar: O2 = 1:1). The gas pressure during the deposition 

was 0.66 Pa. The resulting ZnO films were about 75 nm thick. The samples were annealed at 700 C for 10, 30, 

or 60 min under an ambient gas of nitrogen or oxygen. Finally, circular Pt electrodes with area of 0.064 cm2 

were deposited, using shadow mask, by the electron beam evaporation technique to allow the evaluation of 

electrical characteristics. The distance between two Pt electrodes is 0.5 mm. The structure of samples used to 

characterize the electrical properties is overviewed in Fig. 2.4 [50]. 
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Figure 2.4. Bird’s eye views of samples with top Pt electrodes [50]. 
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Chapter 3. PROPERTIES OF ZnO THIN FILMS BY SPIN-COATING 

METHOD 

 

In this Chapter, I will discuss the effect of annealing temperature on ZnO and Al-doped ZnO (AZO) thin 

films and also I try to find the deposition conditions that yield films with the best properties for TCOs. The 

crystal structure of the ZnO and AZO films were characterized by an X-ray diffractometer using CuKα radiation 

(λ=0.15406nm) at an excitation voltage of 40kV and a current of 30mA. The thickness of the deposited films 

was measured by a film thickness monitor. The electrical resistivity, ρ, was measured at room temperature by 

the four-point probe method. The optical transmittance was recorded by a spectrophotometer in the visible 

range (400~700nm). 

 

3.1 Effect on ZnO films 

  Figure 3.1(a) and 3.1(b) shows the XRD spectra of the ZnO films deposited on quartz substrates and 

annealed under oxygen and air, respectively. From Figure 3.1, it is found that the original ZnO films (no 

annealing), have no peak in any position, which means that the original ZnO thin films have an amorphous 

structure. At the other hand, the annealed ZnO films show strong peaks 2θ=31.72, 34.45 and 36.21˚ positions 

regardless of the atmosphere. These peaks correspond to ZnO planes of (100), (002) and (101) [51].  It is also 

found that all annealed ZnO films exhibited the strongest peak from their (002) preferred orientation. Since 

ZnO has the wurtzite structure, which is depicted in Figure 3.2 [52], these results confirm that with annealing, 

the spin-coating method can create ZnO films with Z-axis orientation. However, the peak variation of the (002) 

plane exhibited some dependency on annealing temperature. When the annealing temperature was increased 

from 400 ℃ to 600 ℃, the peak intensity of the (002) plane increased, but when the annealing temperature 

was increased from 600 ℃ to 700 ℃, the peak intensity of the (002) plane fell, which suggest that ZnO film 

crystallization peaked at around 600℃.  
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(a) Oxygen 

 

(b) Air 

Figure 3.1. XRD spectra of the ZnO films deposited on quartz substrates and annealed under 

(a) Oxygen, (b) Air. 
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Figure 3.2. The wurtzite structure of ZnO films [52]. 
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I measured the thickness of ZnO films by a film thickness monitor produced by Otsuka Electronics Co., Ltd, 

named FE-3000. The thickness of all ZnO thin films is shown in Figure 3.3. It is found that prior to annealing 

ZnO film thickness was 177 nm and annealing under atmosphere yielded smaller thicknesses. The thickness 

of annealed ZnO films fell as the annealing temperature rose. It is because more of the solvent evaporated at 

higher temperatures. 

  As two films that have different thickness can’t be compared to each other in normalization, since the thicker 

the film is, the higher the peak’s intensity is, I developed a new concept in crystallization study, which is called 

“Normalized X-ray Intensity”. This metric is calculated by Equation 3.1. 

 

X′ =  
𝑥

𝑑
 × 100                                            (3.1) 

 

where X’ is the normalized X-ray intensity, X is the measured X-ray intensity, and d is the film thickness. The 

annealing temperature dependence of the normalized X-ray intensities for ZnO (002) plane peak is shown in 

Figure 3.4. It seems that the normalized X-ray intensity rises with the annealing temperature, which means that 

the crystallization of ZnO films deposited by spin-coating method advances as the annealing temperature is 

raised.  

  Figure 3.5 shows the relationship between grain size and annealing temperature. The grain size was 

calculated by Scherrer’s equation (Equation 3.2) [53]. 

 

D =  
0.9𝜆

𝛽cosθ
                                                (3.2) 

 

where D is the grain size (nm), λ is the wavelength of the incident X-ray, β is the full width at half maximum 

of the peak and θ is the center angle of the peak. In Figure 3.5, we find that the grain size increased with 

annealing temperature from 400 ℃ to 700 ℃, which matches the normalized X-ray intensity data. The 

crystallization of ZnO films deposited by the spin-coating method and then annealed has been proved  
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Figure 3.3. The relationship between the films’ thickness and the annealing temperature. 

 

 

 

 

 

 

 



Grad. School of Sci. and Eng., Kansai University 

 

- 25 - 

 

 

 

 

 

 

 

 

 

Figure 3.4. Annealing temperature dependence of the normalized X-ray intensities for ZnO (002) plane peak of 

ZnO films. 
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Figure 3.5. The relationship between the grain size and the annealing temperature of ZnO films. 
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again. 

  The average optical transmittance of all films is shown in Figure 3.6. The transmittance spectrum of ZnO 

films was measured for wavelengths from 400nm to 800nm. The optical transmittance is about 80%~90% in 

the visible range. It is found that the average optical transmittance of all films decreased as annealing 

temperature rose. Since the optical transmittance is dependent on film thickness, as is the normalized X-ray 

intensity, I developed the new concept in optical property called “Normalized Optical Transmittance”. The 

normalized optical transmittance is calculated by Lambert-Beer Law (Equation 3.3) [54]. 

 

𝐴 =  − ln
𝐾

Ko
=  𝜀 CL                                       (3.3) 

 

where A is the absorbance, K is the intensity of the transmitted light, Ko is the intensity of the incident light, ε 

is the mole absorbance coefficient, C is the mole concentration, and L is the length of the light path. From 

Equation 3.3, we obtain Equation 3.4. 

 

−ln
𝑇

100
=  𝜀Cd                                             (3.4) 

 

where d is film thickness, and 

 

𝑇 ′ =  10
100×ln

T
100

d  × 100                                     (3.5) 

 

where T’ is the normalized transmittance. As shown by Equation 3.5, this study assumes, for assessing 

normalized transmittance, that film thickness is 100nm.  The normalized optical transmittance of all ZnO 

films is shown in Figure 3.7.  It is found that the normalized optical transmittance decreased as annealing 

temperature was increased from 400 ℃ to 700 ℃. Maximum normalized transmittance of around 85% was 

observed for the ZnO films annealed at 400 ℃ in air. 
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Figure 3.6. The relationship between the average optical transmittance and the annealing temperature. 
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Figure 3.7. The relationship between the normalized optical transmittance and the annealing temperature of ZnO 

films. 
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  Finally, I analyzed the electrical properties of ZnO films. At first, I tried to use the four probe position 

method, which is the most widely used technique to analyze the TCO film’s electrical properties. Unfortunately, 

the resistivity values of the ZnO films deposited by the spin-coating method were too high to measure. I then 

applied a more complicated method but still failed to measure their resistivity. Thus the electrical properties of 

spin-coated ZnO films could not be analyzed. 

As Transparent Conductive Oxide applications demand low resistivity, the spin-coating method failed to 

realize useful ZnO films. In order to overcome this difficulty, I turned my attention to Al-doped ZnO (AZO) 

films. 

  

3.2 Effect on AZO Films 

AZO films, in which the ZnO films are doped by Al, have good electrical and optical properties for 

transparent conductor applications, and Al is a cheap, abundant and non-toxic material. Therefore, AZO is an 

attractive candidate to replace ITO.  In this experiment, I used the AZO solvent produced by KOJUNDO 

CHEMICAL LABORATORY CO., LTD. The Al/Zn atomic ratio in this solvent is 1/50. The deposited films 

were annealed at 400, 500, 600, or 700℃ in an electric furnace for 60 minutes under an atmosphere of oxygen 

or air.  The same coating process was repeated for 9 times to obtain uniform thick films. 

Figures 3.8(a) and 3.8(b) show the XRD spectra of the AZO films deposited on quartz substrates and 

annealed in oxygen and air, respectively. The XRD spectra show three pronounced diffraction peaks at 

2θ=31.72, 34.45, and 36.21° positions; these peaks correspond to the ZnO planes of (100), (002) and (100), 

respectively. It is found that all of the annealed films showed strong peaks that correspond to their (002) 

preferred orientation. The intensity of the main peak corresponding to the (002) direction increased as the 

annealing temperature increased. Figure 3.9 shows the annealing temperature dependence of the normalized 

X-ray intensities for ZnO (002) peaks. The thickness of all AZO films is summarized in Table 3.1. The 

intensities for the films annealed in air were smaller than those annealed in oxygen. The normalized X-ray 

intensities increased as the annealing temperature increased, which is the same as in the ZnO measurements.  
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(a) Oxygen 

 

(b) Air 

Figure 3.8. XRD spectra of the AZO films deposited on quartz substrates and annealed under  

(a) Oxygen, (b) Air. 
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Figure 3.9. Annealing temperature dependence of the normalized X-ray intensities for  

ZnO (002) plane peak of AZO films. 
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Table 3.1. Thickness of the AZO films prepared by using spin-coating method. 

 

               

 

Annealing temperature (°C) 

Film thickness (nm) 

Annealing ambient 

Oxygen Air 

400 186 155 

500 119 137 

600 152 177 

700 129 148 
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This suggests that the amount of Al dopant was too small to influence the ZnO films’ structure. 

Figure 3.10 shows the relationship between grain size and annealing temperature. In Figure. 3.10, it is found 

that the grain size increased with annealing temperature from 400°C to 700°C. The increase in grain size with 

annealing temperature is supported by the increase in normalized X-ray intensity from 400°C to 600°C, 

therefore, the higher the normalized X-ray intensity is, the larger grain size is. Upon comparing the grain size 

of ZnO films and AZO films, I found that, for the same annealing conditions, AZO films had smaller grain 

size than ZnO films. This is because Al ions have smaller radius (0.0535nm) than Zn ion (0.074nm), and Al 

ions replaced some of the Zn ions in the deposition process [55]. 

Figure 3.11 depicts the variation of resistivity (ρ) of Al-doped ZnO films with annealing temperature. The 

resistivity first decreased as annealing temperature increased from 400°C to 500°C and the lowest resistivity 

(1.01Ωcm for the film annealed in oxygen and 1.4Ωcm in air) was obtained at the annealing temperature of 

500°C. With further increase in annealing temperature, the resistivity started to increase significantly. The 

decrease in resistivity as annealing temperature increased from 400°C to 500°C can be attributed to an increase 

in the grain size of the AZO thin films from 11 nm to 23 nm for the film annealed in oxygen and 14 nm to 21 

nm in air, therefore, increasing the crystallite size of AZO thin films can decrease grain boundary scattering 

and increase the carrier lifetime which yields lower resistivity. However, the resistivity increased as annealing 

temperature rose from 500°C to 700 °C. It has been reported that high annealing temperatures results in higher 

resistivity due to defect association [56].  

Figure 3.12 shows the relationship between the normalized optical transmittance and the annealing 

temperature.  The transmittance spectrum of AZO films was measured for wavelengths from 400 nm to 700 

nm. The optical transmittance was about 85 to 95% in the visible range. The normalized optical transmittance 

decreased as annealing temperature rose from 400°C to 700°C. Maximum normalized transmittance of around 

92.1% was observed for the AZO films annealed at 400°C in oxygen.  

Since ZnO film is a direct transition semiconductor, Equations 3.6 and 3.7 were used to calculate the optical 

band-gap of all films [57]. 
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Figure 3.10. The relationship between the grain size and the annealing temperature of AZO films. 
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Figure 3.11. Relationship between resistivity and annealing temperature of AZO films. 
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Figure 3.12. The relationship between the normalized optical transmittance and  

the annealing temperature of AZO films. 
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       (𝛼ℎ𝜈)2 = 𝐴(ℎ𝜈) − Eg                                   (3.6) 

 

        (1
𝑑⁄ )

2
ln2(1

T⁄ ) (
ℎc

𝜆
)

2

= A(
ℎc

𝜆
− Eg)                       (3.7) 

 

where A is the coefficient of direct transition, 𝜈 is photon frequency and the 𝜆 is the wavelength. 

 

        
(𝛼ℎ𝜈)2

ℎ𝜈
= (1

𝑑⁄ )
2

ln2(1
T⁄ )(ℎ𝜈)                             (3.8) 

 

Figure 3.13 shows the optical band-gap of the ZnO films and AZO films deposited by using the spin-coating 

method. The figure shows that for the same annealing conditions, AZO films have higher optical band-gap 

than ZnO films. It is because as the doping concentration is increased, electrons populate states within the 

conduction band which pushes the Fermi level higher in energy and in the case of degenerate level of doping, 

the Fermi level lies inside the conduction band. In this case, an electron from the top of the valence band can 

only be excited into the conduction band above the Fermi level (which now lies in conduction band) since all 

the states below the Fermi level are occupied states. Pauli's exclusion principle forbids excitation into these 

occupied states. Thus an increase in the apparent band gap is observed.  Apparent band gap is given by Eg+ 

ΔE as shown in Figure3.14 [58]. 
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Figure 3.13. The relationship between the optical band-gap and annealing temperature of 

ZnO films and AZO films. 
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Figure 3.14. The reason of the increment in optical band-gap [58].   
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Chapter 4. THE ELECTRICAL TRANSPORT PROPERTY OF ZnO 

THIN FILMS BY RADIO FRERQUENCY 

SPUTTERING METHOD 

 

4.1 Introduction 

This Chapter discusses the electrical property of ZnO films deposited by using the RF sputtering method. 

In the previous Chapter, I found that the resistivity of ZnO and AZO films deposited by using the Spin-coating 

method is so high that the films are not suitable for TCO applications. This triggered the desire to elucidate the 

fundamental mechanism of carrier (electron) generation of ZnO films with the goal being the lowest resistivity. 

Since ZnO films deposited by the Spin-coating method have a non-uniform surface, I turned to the more 

sophisticated RF sputtering method to create more uniform ZnO films. 

Since thin ZnO films have, generally speaking, a poly-crystalline structure, it is anticipated that grain 

boundary scattering is dominant factor determining electrical transport [59]. It is considered, based on many 

experiments, that electron generation in undoped ZnO thin films is due to the oxygen vacancies (Vo) created 

by ZnO bonding [60] because undoped ZnO films are generally n-type semiconductors, and/or intrinsic donors 

due to the interstitial Zn atoms (Zni) [61]. Note that oxygen vacancies (Vo) and zinc interstitial Zni in ZnO 

have low formation energies. However, these low-energy intrinsic defects could also be responsible for the 

equilibrium p-type doping difficulties of ZnO [62]. An experiment has shown that the electron concentration 

is much higher than the concentration of ionized oxygen vacancies [63]. In addition, recent theoretical 

simulations have predicted that oxygen vacancies (Vo) yield deep states in the band gap [64], while interstitial 

Zn atoms (Zni) do not always play the role of potential donors [64,65]; it has been suggested that hydrogen-

related donors are responsible for electron generation [64,66]. 

As the primary aim of this work is to elucidate the dominant mechanism controlling the electrical property 

of undoped ZnO films and impurity-doped ZnO films, we must clearly identify the structural aspects of 

undoped ZnO films. In some cases, I regard the measured chemical and physical properties of ZnO as only 
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rough estimates, not as highly reliable values. Since the characteristics of ZnO films are expected to be 

dependent on fabrication conditions, I carefully investigated the various factors that may modify the structure 

and property of ZnO films. 

To this end, I characterized the oxygen bonding state by X-ray photoelectron spectroscopy (XPS).  I 

propose an advanced method to characterize the relation between the oxygen-related spectrum component and 

the electron concentration. The relation between oxygen-bonding states and oxygen vacancy generation is 

discussed from various viewpoints of the films’ electrical properties. In addition, I trace the evolution of the 

in-depth concentration profile of oxygen isotope atoms that are captured by the ZnO films during deposition 

in order to elucidate how oxygen atoms and oxygen vacancies behave and contribute to electron generation.  

I reveal how the annealing condition after deposition changes the in-depth profile of oxygen atoms. 

 

4.2 Experiments 

  The sample deposition process was described in Chapter 2.2, and the structure of samples used to 

characterize the electrical properties overviewed in Fig. 2.4. For the physical and chemical analyses, the 

crystalline orientation and the grain size of several ZnO films were characterized by an X-ray diffractometer 

using CuKα radiation at the excitation voltage of 50 kV and current of 300 mA. The atomic composition of the 

films was measured by the Rutherford back-scattering (RBS) technique. In order to examine the electrical 

characteristics of deposited films, I measured the current vs. voltage (I-V) characteristics using Pt electrodes. 

Electron concentration of films annealed under nitrogen ambient was evaluated by the Hall effect at room 

temperature. Since the electron concentration of the films was not so high (shown later), I consider the 

measured values to be only rough values. In this experiment, we need the chemical bonding information of the 

deposited ZnO films in order to elucidate the origin of electron generation and the role of oxygen vacancy. X-

ray photoelectron spectroscopy (XPS) was used to chemically analyze oxygen bonding states in the film. The 

XPS analyses used an Al Kα1,2 (1486.6eV) monochromatic X-ray source. I decomposed the O1s spectra to 

better understand the relation between oxygen vacancy concentration and electron concentration. 

 



Grad. School of Sci. and Eng., Kansai University 

 

- 43 - 

 

4.3 Results and discussion 

 

4.3.1 Current - Voltage Characteristics 

The current-voltage characteristics of four types of ZnO films at room temperature are shown in Figure 4.1. 

The first sample type, called “film A”, was deposited under pure argon and annealed under nitrogen. The 

second type, called “film B”, was deposited under pure argon and annealed under oxygen. The third type, 

called “film C”, was deposited under a mixture of argon and oxygen and annealed under nitrogen. The last 

type, called “film D”, was deposited under a mixture of argon and oxygen and annealed under oxygen. The 

deposition conditions and annealing conditions are summarized in Table 4.1. 

From Figure 4.1, I find that all four types of samples exhibit ohmic conduction in the voltage range of 0.01 

V to 0.1 V although the two annealed under oxygen ambient reveal sub-linear or saturation current behavior 

at voltages higher than 0.1 V. As seen in Figure 4.1, the lateral resistances of films A and C, annealed under 

nitrogen gas, are much lower than those of films B and D, annealed under oxygen gas. In addition, the lateral 

resistance of film A is much lower than that of film C. In contrast to the films annealed under nitrogen ambient, 

the lateral resistance of film B (deposited under Ar gas) is higher than that of film D (deposited under a mixture 

of Ar gas and oxygen gas and annealed under oxygen ambient). 

Next, I used Hall effect measurements to evaluate the electron concentration of every film. The Hall-effect 

measurements revealed that the primary carriers ruling conduction are electrons, so all 4 types of ZnO films 

are n-type semiconductors. As was mentioned previously, I don’t take these measured values as highly reliable. 

I show the relation between electron concentration and fabrication conditions in Figure 4.2. The horizontal 

axis plots the ambient gas conditions; for example, Ar-N2 means that the film was deposited under Ar gas and 

annealed under N2 gas. The results suggest that the films annealed under N2 gas have much higher electron 

concentrations than the films annealed under O2 gas regardless of the deposition ambient gas. 

As seen in Figure 4.1, films A and C (annealed under nitrogen ambient) clearly show ohmic conduction 

even at 5 V (~102 V/cm), which suggests that the electrical measurements are successful and that the films are 

semiconductors. As a result, the electron concentration values estimated by the Hall effect are reliable in a  
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Table 4.1.  Film deposition conditions and anneal conditions. 

Samples                 Deposition                                 Annealing 

           RF power density   Gas       Pressure (Pa)      Gas     Temperature (℃)  Time (min.) 

             (W/cm2) 

A                          Ar(100%)                    N2 

B                                                      O2             700            10,30,60 

C            1.99           Ar/O2       0.66            N2 

D                          (50%/50%)                   O2 
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Figure 4.1. Current – voltage characteristics of four different ZnO films. All films were annealed for 60 min.  

Films A and C exhibit ohmic conduction. 
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Figure 4.2. Electron concentrations of films deposited and annealed under various ambient gas conditions. The 

electron concentrations are obtained by the Hall effect at room temperature. All films were annealed 

for 60 min. 
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semi-quantitatively manner. On the other hand, films B and D (annealed with the oxygen ambient) show non-

ohmic conduction in a high-voltage range (see Figure 4.1), which suggests that the films should be dielectrics 

rather than semiconductors. Therefore, except for the XPS analyses, I focused on the characteristics of films 

A and C. 

As evidenced by recent studies, the physical and optical properties of ZnO nanowires are the center of 

attention in a number of emerging areas such as low-voltage and short-wavelength optoelectronics [67]. 

However, such properties are more sensitive to fabrication process conditions than ZnO films due to the small 

dimensions involved [68,69]. As the physical and optical properties of thin films are averaged across the plane, 

it is anticipated that stable properties can be obtained. 

 

4.3.2 X-ray Diffraction Results 

The crystalline structures of the ZnO films were identified by X-ray diffraction (XRD). The diffraction data 

of the ZnO films deposited and annealed under the different ambient gas conditions are shown in Figure 4.3; 

a specific peak is observed around 34.5 deg for the ZnO (002) plane. The XRD results show that, like the ZnO 

films deposited by using spin-coating method, all as-prepared films are polycrystalline with preferred 

orientation along the ZnO (002) plane, which suggests that all films have the hexagonal wurtzite structure. 

The crystallite size of the ZnO films was determined using Scherrer’s formula,  

   

D= 0.9cos         

 

where D is grain size (nm), is the wavelength of the incident X-ray,  is the center angle of the peak, and  

is the full width at half maximum of the peak. In this study, I assume  =[e
2 – 0

2]1/2, where e is half-value 

width and o is the corrected value (3°). The values of 2, half-value width, and grain size are summarized in 

Table 4.2. The grain size of the films varies from 10 to 12 nm. It should be noted that films A and C, annealed 

under nitrogen gas, have almost the same grain size as films B and D, annealed under oxygen gas. It has been 

suggested that the lateral transport property of polycrystalline ZnO film is dominated by grain boundary  
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Table 4.2. XRD results (crystallite size) for various ZnO films. 

Film Category         Gas   

                (Depo.-Anneal) 

2θ [deg.] Half-value width [deg.] Grain size [nm] 

A           Ar-N2 34.54 0.754 12.0 

  C           Ar/O2-N2 34.56 0.804 11.2 

B           Ar-O2 34.65 0.835 10.7 

D           Ar/O2-O2 34.64 0.884 10.0 
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Figure 4.3. X-ray diffraction curves for various ZnO films. All films were annealed for 60 min. 
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scattering [70]. Accordingly, I tentatively assume that grain boundary scattering makes a similar contribution 

to the electrical transport properties of the ZnO films examined here. 

 

4.3.3 Rutherford Back Scattering Analysis 

Figure 4.4 shows an example of the in-depth profiles of the normalized atomic ratio values of the ZnO films 

(film B) deposited under Ar gas and annealed under O2 ambient. The atomic ratios of various ZnO films are 

summarized in Table 4.3. We can see that the ZnO films deposited or annealed under oxygen ambient have 

higher oxygen atomic ratios than those deposited or annealed under oxygen-free ambient. This suggests that 

oxygen ions can diffuse deeply into the ZnO films when the films are deposited or annealed under an ambient 

containing oxygen. 

 

4.3.4 X-ray Photoelectron Spectroscopy 

XPS spectra are widely used to identify the chemical bonding states and to analyze the bonding energy 

variation in thin films [71]. Figure 4.5 shows the XPS spectra of a ZnO film (film A). Wide-scan spectra are 

shown in Figure 4.5(a) and narrow-scan spectra around the O1s-related components are shown in Figure 4.5(b). 

I confirmed that there are no observable shifts in Zn-related or O-related primary spectra in response to the 

deposition condition or annealing condition. Peaks located at 1022 eV and 1045 eV correspond to the chemical 

states of Zn2p3/2 and Zn2p1/2, respectively; this indicates that the Zn ions mainly have the 2+ state [72]. It is 

clearly seen in Figure 4.5(b) that the spectral profile of the O1s signal is not symmetrical, which suggests that 

the O1s spectrum consists of multiple spectra [73]. In Figure 4.5(b), the spectral profile of the O1s signal is 

decomposed into three possible components, which are examined later; the left spectra are obtained at the film 

surface and the right spectra are obtained in the film body region after Ar etching of the film. Though details 

of the XPS spectra are not shown in Figure 4.5(a), the surface of the post-annealed film was fatally 

contaminated by carbon compounds, which means that the XPS data at the surface are not reliable. Therefore, 

I dropped consideration of the data taken from the surface. The O1s spectra shown in the right side of Figure 

4.5(b) are used in the following discussion.  
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Table 4.3.  Atomic ratio in ZnO films 

Film category   Gas (Depo-Anneal)    O/Zn atomic ratio 

A               Ar-N2              1.02 

B               Ar-O2              1.03 

C               Ar/O2-N2           1.03 

D               Ar/O2-O2           1.04 
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Figure 4.4 Example of in-depth atomic ratio profiles of sample (film A).  

The film was annealed for 60 min. 
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(C) 

 

Fig. 4.5. X-ray photoelectron spectroscopy spectra of ZnO film (film A). The film was annealed for 60 min. (a) 

wide scan spectra, (b) narrow scan spectra around O1s spectra. The original O1s spectra are decomposed 

into 3 oxygen-related spectra. The left spectra are obtained at the film surface before Ar etching, and the 

right spectra are obtained in the film body after Ar etching. (c) narrow scan spectra around O1s spectra. 

The original O1s spectra are decomposed into 2 oxygen-related spectra. 
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Controversy surrounds the analysis of the O1s peak of ZnO films. Some studies  [74,75] state that the 

spectral profile of the O1s signal can be decomposed into two spectra where the best fit to the asymmetric peak 

consists of two nearly Gaussian components, centered at 530.3eV (O’i) and 531.9eV (O’ii) (see Figure 4.5(c)); 

this is the conventional understanding. It has been considered that the O’i peak is attributed to the O2- ions in 

the ZnO crystal lattice, and that the O’ii peak (so-called sub-peak spectrum) is attributed to the O-H bonds of 

the H2O molecules absorbed by the films. In contrast to the conventional idea, other studies [76.77] state that 

the spectral profile of the O1s signal can be fitted by three Gaussian profiles as shown in Fig. 6(b), centered at 

530.5 eV (Oi), 531.6 eV (Oii), and 532.6 eV (Oiii); it is assumed that the Oii spectrum lies between the Oi 

spectrum and the Oiii spectrum.  I consider that this decomposition approach can reproduce the original O1s-

related source spectra better than the conventional alternative. This approach is also applied to the analysis of 

TiO2 films in recent studies [78, 79], where the interpretation of the three components is basically identical to 

that shown above.  Therefore I apply this decomposition approach to the analysis of the XPS spectra. 

The Oiii peak has a binding energy higher by about 2.1eV than that of the Oi peak. The lowest energy peak 

(Oi) corresponds to O-Zn bonding, and is attributed to oxygen ions neighboring Zn atoms that form the full 

complement of six nearest-neighboring oxygen ions. On the other hand, the highest energy peak (Oiii) is 

generally ascribed to chemisorbed oxygen ions at the grain boundaries or at the surface of the film. In addition, 

it is considered that the oxygen ions contributing to the generation of the Oiii spectrum lie in oxygen-deficient 

regions. The interpretation of the Oii peak (around 531.6 eV) remains controversial. Some studies [80, 81] 

report that the peak is associated with the O2- anions in the matrix of the ZnO region, while other papers [82, 

83] state that this peak develops with increasing loss of oxygen and so must be ascribed to oxygen vacancies 

(Vo). 

In order to examine those predictions, I fabricated ZnO films with different annealing times (10, 30, and 60 

min), and then applied the Ar etching technique to remove the films’ surfaces since they are readily 

contaminated by moisture and other chemicals “present in the atmosphere prior to the annealing” during the 

annealing. The electron concentration of the films was also estimated by the Hall effect. Here I introduce an 

equation to examine the relative concentration of every atomic component [84]. 
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G=hG/[hOi + hOii +hOiii + hZn2p],       (4.2) 

 

where G is the rate of any one of the denominator components, and hG is the magnitude of any denominator 

component. Behavior of parameter hG is summarized in Table 4.4. 

I use the Gaussian fitting method to decompose the original spectral profile of the O1s signal two times. 

In the first step, I applied the conventional two-decomposition approach to the O1s source spectra in order to 

examine whether the conventional sub-peak spectrum (O’ii) yields a meaningful result. In the second step, I 

applied the three-decomposition approach [76, 77]. As it is considered that the electron generation of ZnO 

films is ruled by the generation of oxygen vacancies [85], I tried to verify the relationship between the 

proportion of O’ii peak intensity and the electron concentration (see Figure 4.6). It is seen that the film annealed 

for 30 minutes has the highest electron concentration, and that the film annealed for 10 minutes has a higher 

electron concentration than that annealed for 60 minutes. However, we can see that the proportion of the O’ii 

peak simply increases from 10 min to 60 min, which is inconsistent with the electron concentration behavior. 

In Figure 4.7, I plot the relationship between the proportions of Oii and Oiii peak intensities and the 

electron concentration. First, I confirmed that the behavior of the proportion of Oiii peak intensity is 

inconsistent with the behavior of the electron concentration as shown in Figure 4.7. Figure 4.7, however, 

demonstrates an interesting behavior of Oii peak intensity. The Oii peak intensity is inversely proportional to 

the electron concentration; it takes the lowest value (1.3 %) for the film annealed for 30 min and the highest 

value for the film annealed for 60 min. 

Finally, I used the XPS technique to validate the above analysis. Though it has been suggested that the 

behavior of the Oii peak intensity reveals a direct relation between Oii peak intensity and electron 

concentration, the interpretation of the Oii peak is still controversial as was noted above. All the values of O1s-

related spectral intensities before and after Ar etching of the film surface are summarized in Table 4.4, where 

films A and B are analyzed. It is seen that, for films A and B, the Oii and Oiii peak intensities are reduced after 

Ar etching.  According to John C. C. Fan’s article [82], the Oii peak intensity should take a higher value at  
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Table 4.4.  Estimated relative component proportions (hG values given in eq. (4.2)). 

Film category         Gas (Depo-Anneal)     Oi      Oii      Oiii      Zn2p 

A (before etching)        Ar - N2           15.47 %   1.62 %   3.69 %   79.21 % 

A (after etching)          Ar - N2          15.60 %   0.99 %   2.51 %   80.60 % 

B (before etching)        Ar - O2           15.46 %   2.09 %   4.44 %   78.01 % 

B (after etching)          Ar - O2          16.89 %   1.35 %   1.86 %   79.89 % 
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Figure 4.6. Relationship between the O’ii peak height and the electron concentration (film A).   

The original O1s spectra are decomposed into two oxygen-related spectral components. 
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Figure 4.7. Relationship between the Oii peak height or Oiii peak height and the electron concentration (film A).  

The original O1s spectra are decomposed into three oxygen-related spectral components. 
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the surface than in the film body because moisture in the atmosphere can easily diffuse into the film body. In 

addition, we must address the undesirable effect of carbon-related contamination of the surface of the film 

prior to annealing.  Therefore, I discard the XPS spectra data taken from the surface. In the present 

experimental results, I consider that the Oii peak extracted from the original spectral profile of the O1s signal 

is associated with the O2-anions in the ZnO region matrix, and is inversely proportional to electron 

concentration. It has been discovered that, after Ar etching of the film surface, film B annealed under oxygen 

gas has much higher Oii peak intensity than film A annealed under nitrogen gas. It is suggested that, in the 

ZnO matrix region, the film annealed under oxygen gas has much higher oxygen ion concentration than that 

annealed under nitrogen gas. Due to the excess oxygen ions in the ZnO matrix region, therefore, the oxygen 

vacancy concentration, which will contribute to the electron generation characteristic of the ZnO film, 

decreases because the excess oxygen ions, coming from the outside atmosphere, diffuse more deeply into the 

film and they occupy oxygen vacancy sites. 

 

4.3.5 Examination of the roles of ambient oxygen atoms during deposition 

In order to examine the influence of the oxygen ambient in the deposition and anneal processes on the 

physical property of ZnO films, I used an oxygen isotope (O18) as the ambient gas in the deposition process. I 

analyzed the depth profiles of oxygen atoms (O16 and O18) in the films deposited under the argon/oxygen (O18) 

mixture gas by the SIMS technique and the bonding states by the XPS technique. The XPS data of various 

films are shown in Table 4.5. Details of this XPS analysis are given in a later part of this section. The purpose 

of this experiment is to elucidate the dominant mechanism triggering the different lateral resistance values of 

ZnO films annealed under nitrogen ambient from those of the ZnO film annealed under oxygen (O16) ambient. 

   The depth profiles of O16, O18, Zn, Si, and C given by the SIMS analysis are shown in Figure 4.8; Figure 

4.8(a) shows the corresponding depth profiles of the as-deposited ZnO film, Figure 4.8(b) those of the ZnO 

film annealed under nitrogen ambient, and Figure 4.8(c) those of the ZnO film annealed under oxygen (O16) 

ambient. In Figure 4.8(a), the concentration of O18 atoms is similar to that of O16 atoms, which reveals that 

significant amounts of O18 atoms were captured by the ZnO film in the deposition process. In Figure 4.8(b)  
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Table 4.5. Estimated relative component proportions of ZnO films deposited in the Ar/O18 mixture ambient (hG 

values given in eq. (4.1)). Top surfaces of all samples were etched by Ar+ beam before the XPS analysis. 

 

Film category  Gas (Depo-Anneal)     Oi       Oii      Oiii      Zn2p 

 A         Ar - N2         15.60 %   0.99 %    2.51 %    80.90 % 

 C        Ar/O2 - N2       15.42 %   1.10 %    2.29 %    81.19 % 

 B        Ar - O2          16.89%   1.35 %    1.86 %    79.89 % 

 D        Ar/O2 - O2       15.26 %   1.22 %    2.19 %    81.33 % 
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(c) 

Fig. 4.8. Depth profiles of atoms (O16, O18, Si, ZnO, and C) in the ZnO films. (a) as-deposited ZnO film, (b) ZnO 

film annealed in the nitrogen ambient, (c) ZnO film annealed in the oxygen (O16) ambient. 
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and 4.8(c), it is seen that carbon contamination of the surface is remarkable after the annealing process, so the 

XPS analysis reliable and useful for discussing the chemical bindings. I also found that the concentration of 

Si atoms is significantly high for the ZnO film in Figure 4.8(c). It is anticipated that redox of the SiO2 film has 

taken place.  The influence of SiO2 film redox must be carefully considered because SiO2 molecules may be 

created in the ZnO film. 

  Figures 4.9 to 4.11 compare the depth profiles of O16 and O18 atoms for three conditions; Figure 4.9 shows 

that of the as-deposited ZnO film, Figure 4.10 that of the film annealed under nitrogen ambient, and Figure 

4.11 that of the film annealed under oxygen (O16) ambient. After the annealing process under nitrogen ambient, 

the concentration of O18 is slightly decreased, while the concentration of O16 is roughly the same as that in 

Figure 4.9. After the annealing process under oxygen ambient (O16), however, the concentration of O18 is 

significantly decreased and the concentration of O16 is increased.  It is suggested that the annealing under 

oxygen ambient (O16) increases the oxygen concentration (O16) of ZnO films, resulting in the decrease in the 

oxygen vacancy, which is consistent with the measured results for electrical characteristics shown in Figure 

4.1 and 4.2. The behavior of O18 concentration reveals that the annealing process promotes the out-diffusion 

of oxygen atoms; O18 atoms have the same chemical property as O16 atoms [86]. For the annealing process 

under nitrogen ambient, the out-diffusion of oxygen atoms (O18) should induce the generation of oxygen 

vacancies. On the other hand, for the annealing process under oxygen ambient, the out-diffusion of oxygen 

atoms (O18) should be compensated by the diffusion of oxygen molecules (O16) into the ZnO film; the result 

being a decrease in oxygen vacancies. 

The above understanding is consistent with our XPS data summarized in Table 4.5. It is suggested that the 

films annealed under nitrogen gas have lower Oii peak proportion than those annealed under oxygen gas. The 

films deposited under Ar/O2 ambient have higher Oii peak proportion than those deposited under Ar ambient, 

which suggests that the films deposited under Ar/O2 ambient have lower oxygen vacancy concentration than 

those deposited under Ar ambient. This is consistent with our previous discussion that oxygen molecules are 

captured by the films during deposition if the ambient gas contains oxygen.  
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Figure 4.9. Depth profiles of atoms (O16 and O18) in the as-deposited ZnO film. 
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Figure 4.10. Depth profiles of atoms (O16 and O18) in the ZnO film annealed in the nitrogen ambient. 
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Figure 4.11. Depth profiles of atoms (O16 and O18) in the ZnO film annealed in the oxygen (O16) ambient. 
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Chapter. 5 The Stability of ZnO in Low Humidity 

 

  In Chapter 4, I have discussed physical properties of the ZnO and AZO films deposited by using the spin-

coated method and possible mechanisms supporting the electrical transport property of the ZnO films deposited 

by using RF sputtering method.  But, in some cases, the environment influences chemical property of ZnO 

films and changes the electrical property remarkably.  For example, the degradation of conductivity of AZO 

thin film has been reported in a certain ambient, such as, in a high partial oxygen pressure ambient, and in a 

high humidity ambient.  So, in this Chapter, I will discuss the change of electrical property of ZnO films 

annealed in different atmosphere without the humidity effect as the time goes on.  

 

5.1 Experiment 

  In this experiment, I used the RF sputtering method which was discussed in Chapter 4.2 in comparison to 

the spin-coating method; the ZnO films deposited by using RF sputtering method have a more uniform surface 

and the electrical property is excellent.  ZnO films were deposited on P-type silicon substrates with a top SiO2 

film.  Before sputtering process, the substrates were cleaned by hydrogen peroxide and concentrated sulfuric 

acid in three minutes. The deposition pressure was controlled below 4x10-3 Pa. The RF power density was 1.99 

W/cm2. The distance between the substrate and the ZnO target was 50 mm. The atmosphere of deposition was 

Ar gas. The as-deposited ZnO films were annealed under nitrogen or oxygen atmosphere for 60 minutes at 

700℃, respectively.  Then, the humidity stability of the annealed ZnO thin films were tested under a humid 

ambient.  The humidity stability tests were performed in a chamber with the condition of 10 ± 5% humidity 

at room temperature. In this humidity condition, the effect of humidity can be ignored. The humidity’s variation 

diagram is shown in Fig. 5.1. 

  I analyzed the surface roughness of ZnO by using AFM (atomic-force microscopy), the in-depth profiles of 

the normalized atomic ratio values of the ZnO films by using RBS (Rutherford back scattering) technique, 

surface chemistry of ZnO films by using XPS (X-ray photoelectron spectroscopy), and conductance by using  
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Figure 5.1. The humidity’s variation in room temperature. 
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current-voltage characteristics. 

 

5.2 Result and Discussion 

5.2.1 Current - Voltage Characteristics 

  I measured the d. c. current of nitrogen- or oxygen-annealed ZnO films that was exposed for 23 days in a 

camber under low humidity environment.  Time evolutions of d. c. current valued of ZnO films are shown in 

Fig. 5.2(a) for the nitrogen-annealed film and Fig. 5.2(b) for the oxygen-annealed film, respectively, where “0 

day” means “just after fabrication”.  In Fig. 5.2, it is found that the d. c. current of nitrogen-annealed ZnO 

films shows an ohmic behavior from 0 V to 5 V, on the other hand, the d. c. current of oxygen-annealed ZnO 

films shows an ohmic behavior from 0 V to 2 V, but being saturation over 2 V regardless of the time exposed 

under low humidity environment.  It seems that the humidity doesn’t influence the electrical transport 

property of ZnO films.  To see clearly about the d. c. current variation of ZnO films, we built a diagram of 

the conductance at 0.5 V with the time exposure.  They are shown in Fig. 5.3.  It is found that the 

conductance of nitrogen-annealed or oxygen-annealed ZnO films is almost stable for 23 days.  It seems that 

the electrical property of ZnO films has not been changed. 

 

5.2.2 AFM Measurement 

  The surface roughness of oxygen-annealed ZnO films in “0 day” and in “8 day” is shown in Fig. 5.4 (a) and 

5.4 (b), respectively. The specific value is shown in Table 5.1.  Ra means arithmetic average of absolute 

values from the center to the edge of the film, Rq means root mean squared value from the center to the edge 

of the film, and Rmax means a vertical distance from the top to the valley of the film.  It is found in Fig. 5.4 

that the grain size of the ZnO films for “0day” and “8day” is ranging from 30 nm to 70 nm.  It is no definite 

difference between those films.  As, in Table 5.1, values of Ra and Rq in ZnO film for “8day” are larger than 

those of “0day”, it is inferred that the number of projections of ZnO film surface for “8day” is lower than that 

for “0day”. 
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5.2.3 RBS and XPS measurement 

The atomic ratios of oxygen-annealed ZnO films exposed for “0day” and “8day” are summarized in Table 

5.2, where the atomic ration was evaluated by RBS technique. Since the difference between the two conditions 

is less than 1% and the accidental error of RBS is approximately 1%, I can’t make a conclusion that the oxygen 

atomic proportion of ZnO film exposed for “0day” is lower than that for “8day”. 

In order to work out this problem, I used the XPS technique to find the atomic proportion of ZnO films. 

Since the films are readily contaminated by moisture and other chemicals “present in the atmosphere prior to 

the annealing” during the annealing, I applied the Ar etching technique to remove the film surfaces. The atomic 

proportion of ZnO films exposed for 0day or for 8day is shown in Table 5.3, where the data was calculated by 

XPS analysis. It seems that the atomic proportion of ZnO films exposed for 0day is the same as that for 8day. 

 

5.3 Short Summary 

  In this Chapter, I evaluated the time evolution of electrical property of ZnO films exposed in a low humidity 

condition for a long time.  Although original electrical properties of nitrogen-annealed and oxygen-annealed 

ZnO films are different, they were basically stable against the air exposure in a low humidity for 23 days.  I 

also analyzed the surface roughness of ZnO films by using AFM (atomic-force microscopy), the in-depth 

profiles of the normalized atomic ratio values of the ZnO films by using RBS (Rutherford back scattering) 

technique, and surface chemistry of ZnO films by using XPS (X-ray photoelectron spectroscopy).  It was 

shown that chemical bonding states and atomic ratio of ZnO films were hardly influenced by the air exposure. 

 

 

 

 

 

 

 

 



Grad. School of Sci. and Eng., Kansai University 

 

- 72 - 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. The surface roughness of ZnO films annealed under oxygen atmosphere preserved in 0day or 8day. 

 

Sample Ra(nm) Rq(nm) Rmax(nm) 

0day 1.84 2.29 18.6 

8day 2.19 2.76 23.2 
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Table 5.2. The atomic ratios of ZnO films annealed under oxygen atmosphere and preserved in 0day or 8day by 

RBS technique. 

Sample O/Zn Ar/Zn 

0day 1.02 0.005 

8day 0.95 0.005 
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Table 5.3. The atomic ratios of ZnO films annealed under oxygen atmosphere and preserved in 0day or 8day by 

XPS technique. 

Sample O (%) Zn (%) 

0day 46.5 53.5 

8day 46.4 53.6 
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(a) Nitrogen-annealed sample 

 

(b) Oxygen-annealed sample 

Figure 5.2. Current-Voltage characteristics of ZnO films preserved in 0day and 23day. (a) Annealed under nitrogen 

atmosphere, (b) Annealed under oxygen atmosphere. 
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Figure 5.3. The conductance of ZnO annealed under nitrogen or oxygen atmosphere with increasing reserved time 

in 0.5V. 
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(a) 0day 

 

(b) 8day 

Figure 5.4. The surface roughness of ZnO films annealed under oxygen.  

(a) Preserved in 0day, (b) Preserved in 8day 
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CHAPTER 6.  Conclusion 

Currently, indium tin oxide (ITO) thin film is often used as a transparent conductive film in thin film solar 

cells, flat panel displays, touch-panels and so on. However, indium (In), the raw material of ITO film is a rare 

metal and toxic, therefore people show great concern about its extensive use. In this context, from an 

environmental point of view, people pay more and more attention to indium-free material. ZnO thin film is a 

cheap material and abundant in resources. It is non-toxic and environmentally-friendly. According to 

theoretical analysis, its resistivity can be expected to reach a value comparable to that of ITO, thus it is 

considered the most promising alternative material. 

In order to improve the electrical properties of ZnO thin film and increase its reproducibility, I discussed the 

basic physical properties of ZnO film in this dissertation: 

 

[1] Research on the physical properties of ZnO film and aluminum-doped ZnO thin film 

deposited by using Spin-coating method 

In this study, ZnO and Al-doped ZnO (AZO) films were deposited on quartz substrates using spin-

coating method. The structural, electrical and optical properties of AZO thin films were investigated. The 

ZnO and AZO thin films had a hexagonal wurtzite structure and the orientation of the sample was along 

the c-axis, regardless of annealing temperature. The normalized optical transmittance of ZnO and AZO 

films decreased with increasing annealing temperature from 400 ℃ to 700 ℃. Since the resistivity of 

the ZnO films which were deposited by using spin-coating method, it can’t be applied to Transparent 

Conductive Oxide. The resistivity of AZO films decreased with increasing annealing temperature from 

400°C to 500°C, but increased with increasing annealing temperature from 500°C to 700°C. These results 

indicate that increasing the grain size of AZO films will decrease grain boundary scattering so that the 

resistivity decreases with increasing annealing temperature from 400°C to 500°C. And the lowest 

resistivity (1.01Ωcm) was obtained at annealing temperature of 500°C in oxygen ambient.  
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[2] Research on the conductive mechanism of undoped ZnO thin film deposited by using RF 

sputtering method 

Theoretical analysis (first-principles calculation) may not reproduce the physical properties of ZnO, 

so this research mainly explores into physics in property context in terms of experiment, and makes 

evaluation on film properties. Undoped ZnO films were deposited on the SiO2 film of monocrystalline Si 

substrates by RF sputtering with different deposition conditions and annealing conditions. In this study, 

we evaluated lateral resistance of the films, crystallinity, chemical bonding states, and chemical 

stoichiometry in order to elucidate the electron generation mechanism of undoped ZnO films. We found 

that the films annealed under nitrogen ambient have much lower resistance than those annealed under 

oxygen ambient. In addition, we proposed that the O1s spectra of ZnO films should be decomposed to 

three oxygen-related spectral components and that the Oii peak (one of the Gaussian-fitted components 

extracted from the original O1s spectra) is associated with the O2- anions in the ZnO matrix region because 

its peak height is inversely proportional to electron concentration. Hence, we think that the Oii peak 

intensity reflects the amount of oxygen vacancies in the undoped ZnO films. The behavior of depth 

profiles of oxygen isotope (O18) clearly revealed that the annealing process in the nitrogen ambient 

promotes the generation of oxygen vacancies, while annealing under oxygen ambient decreases the level 

of oxygen vacancies. Therefore, it is considered that the behavior of the Oii spectrum intensity is related 

to the oxygen vacancy level. 

 

[3] Study on stability of ZnO film in low humidity environment  

Mass production and durability problems of ZnO thin film have not yet been solved, so it cannot be put into 

extensive use. In this experiment, we used the RF sputtering method to produce the ZnO films. We 

measured the current of ZnO films annealed by nitrogen or oxygen from deposited immediately to 23day 

in a camber under low humidity environment. It is found that the conductance of ZnO films annealed 

under either nitrogen atmosphere or oxygen atmosphere, is almost consistent from 0day to 23day. 
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Compared with AFM diagram, it has no obvious different between 0day and 8day. And in atomic ratios 

of ZnO films annealed under oxygen atmosphere and preserved in 0day or 8day, there is no obvious 

different between each other. So it is seemed that the electrical property of ZnO films has not been changed 

even reserved under low humility condition. 
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