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＜概要＞ 
 現在, 化石燃料の枯渇、及びその大量消費による二酸化炭素の増加が地球温暖化の原因と

なっており、化石燃料に代わる新規クリーンエネルギーの開発が求められている。 そうい

った背景から水を水素と酸素に分解する人工光合成系の研究が盛んに行われている。人工

光合成系の研究を行う上で、三つの実現課題がある： 
（1）光エネルギーを効率良く捕集し、反応中心に集める(光誘起エネルギー移動)。 
（2）光誘起電子移動反応後の逆電子移動反応を抑制し，効率の良い長寿命電荷分離状態を

形成する。 
（3）光誘起電子移動反応で生じた電子を次の反応に利用する (多電子酸化還元反応)。 
本研究では人工光合成の実現を目指し、構造制御したポリマーの合成及び特性を検討した。

また、合成できたポリマーを用いて人工光合成への応用を試した。それらの結果について

報告する。 
  
≪各章の要旨≫ 
  CHAPTER 1 新規擬リビング重合法による構造制御したメチルピロール系ポリマー

の合成と人工光合成への応用 
 この章では、新規擬リビング付加縮合重合法を開発した。従来の付加縮合重合と比較し、

新規擬リビング付加縮合重合法ではポリマーの構造制御可能になる。また、この新規擬リ

ビング付加縮合重合法を用いて、構造制御したポリマーの性能評価と人工光合成への応用

を検討したので、本章で報告する。 
 
Section 1-1. 新規擬リビング付加縮合重合法の開発 
通常の付加縮合重合反応では反応がランダムに起こり、ポリマーの構造や分子量などの

制御ができない。これに対して、精密重合であるリビング重合法を用いた場合ポリマーの

構造や分子量などの制御ができる。本来、付加縮合重合は逐次重合で進行するためリビン

グ重合は本質的に不可能と思われてきた。本節ではモノマー、ダイマーの異なる反応性の



特性を利用して、新規擬リビング付加縮合重合の開発と証明について報告する。 
 
Section 1-2. A,B-ブロック型両親媒性ポリマーを介した異相間のエネルギー移動 
新規擬リビング付加縮合重合法を用いて、疎水部にエネルギードナー、親水部にエネルギ

ーアクセプターを有する A,B-ブロック型両親媒性ポリマーを合成した。人工光合成のシス

テムにおける異相間の反応は重要であり、これを利用して、光化学反応により生成される

高エネルギー物質の効率的な分離に利用できる。そこで A,B-ブロック型両親媒性ポリマー

を介した異相間のエネルギー移動が起こったことについて報告する。 
 
Section 1-3. 分岐型ポリマーの合成と光捕集系の構築 
太陽光を効率よく捕集し反応中心に向かうエネルギー移動を行うことは光合成系の基本

プロセスである。天然の光合成では、アンテナクロロフィルと呼ばれる光捕集部分を形成

し，各色素間を繰り返しエネルギー移動することによって，反応中心に送られる。本節で

は、新規擬リビング付加縮合重合法を用いて、分岐部にエネルギードナー、中心部にエネ

ルギーアクセプターを有する分岐型ポリマーを合成した。合成したポリマーを利用して、

光合成の最初のステップである多光子捕集を実現するもので、効率の良い光捕集系の構築

に成功した。 
 

Section 1-4. 光捕集後の電子移動を可能とする分岐型ポリマーの合成と人工光合成アンテ

ナ反応中心への応用 
 前節で効率の良い光捕集系の構築を報告した。本節では、光捕集系の続きとして、分岐

型ポリマーの中心部にあるエネルギーアクセプターの隣に電子アクセプターを導入した。

これにより、エネルギーが分岐部分にあるエネルギードナーから効率良く中心部にあるエ

ネルギーアクセプターに集められ、その後にこのエネルギーを利用して、電子ドナーーア

クセプター間の電子移動が起きる。この系では効率的な光捕集と光誘起電子移動を含め、

天然光合成のアンテナ反応中心とよく似ている。この結果について報告する。 
 
 
CHAPTER 2 構造制御したベンゼン型ポリマーの合成と人工光合成への応用 
 この章では、安定なベンゼン誘導体とアルデヒドの付加縮合重合で、ベンゼン型ポリマ

ーを合成し、高分子ワイヤーとしての電子移動性能を評価した。また、エネルギー準位が

異なる 2 種類のベンゼン型ポリマーを利用し、異なるエネルギー準位を有する新規 A,B-ブ
ロック型ポリマーを分子ワイヤーとした多段階電子移動反応も検討したので、本章で報告

する。 
  
 



Section 2-1.  ベンゼン型ポリマーの合成と高分子ワイヤーとしての光誘起電子移動評

価 
人工光合成系構築には，長寿命電荷分離状態を形成させる事が不可欠である。この課題

を達成する方法の一つに，電子ドナーと電子アクセプターをπ-共役系化合物で結合させ，

そのπ-共役系を通じて電子をドナーからアクセプターへ送るという，遠距離電子移動系の

構築が可能な分子ワイヤーという概念がある。本節ではベンゼン誘導体とアルデヒドの付

加縮合体である飛石型共役系ポリマー (ポリマー自体は共役した構造ではないが、共役系分

子であるベンゼンが sp3－炭素で結合し、飛石的に共役系が存在するポリマーである)を高分

子ワイヤーに用いた光誘起エネルギー電子移動反応について研究を行った。 
 
Section 2-2. 異なるエネルギー準位を持った高分子ワイヤーの合成と光化学的挙動 
長寿命電荷分離状態を形成するため、天然光合成の Z スキームを模倣して、多段階電子

移動系の構築が必要となる。ここで光誘起電子移動反応後の逆電子移動を抑制するため、

ドナーを有する高エネルギー準位部、アクセプターを有する低エネルギー準位部からなる

エネルギーレベルの異なる A,B ブロック型ポリマーを、トリヒドロキシベンゼン及びその

エステルを用いて合成を試みた。この系では、光の照射による励起された電子は高いエネ

ルギー準位部分のドナーから低いエネルギー準位部分のアクセプターへ電子移動ができる

が、逆にドナーが低エネルギー準位部にある場合、電子移動が起こらなかった。このこと

は高分子ワイヤーに電子移動の方向性を持たせたことを意味し、多段階電子移動を発生さ

せ、逆電子移動反応を抑制し、光誘起電子移動反応後の電荷分離状態を長寿命させること

につながることを報告する。 
                                           以上 
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Abbreviations used in this study are as follows 

 

Mepyr                     1-methylpyrrole 

 BS                        benzaldehyde-2-sulfonic acid sodium salt 

 2-EtPyr                    2-ethylpyrrole 

PeA                       3-perylenecarboxaldehyde 

 p-TS                       p-toluenesulfonic acid monohydrate 

 MePyr-BS                  Methylpyrrole type polymer prepared by 

1-methylpyrrole with benzaldehyde-2-sulfonic acid 

sodium salt 

iPB                       4-isopropylbenzaldehyde 

 PyA                       1-Pyrenecarboxaldehyde 

 AQ                       anthraquinone 

 MV2+                                methylviologen 

iPB(Py)-BS(Pe)             A, B-block amphiphilic polymer containing Py unit in 

the hydrophobic phase and the Pe unit in the 

hydrophilic phase 

iPB(Py)-BS(none)           A, B-block amphiphilic polymer containing Py unit in 

the hydrophobic phase  

iPB(none)-BS(Pe)            A, B-block amphiphilic polymer containing Pe unit 

in the hydrophilic phase 

MePyrA                    1-Methyl-2-pyrrolecarboxaldehyde 

Py(6)-Pe(1)                 Branched polymer indicates that the molar ratio of the 

Py unit to the Pe unit is 6:1 

Py(3)-Pe(1)                 Branched polymer indicates that the molar ratio of the 

Py unit to the Pe unit is 3:1 

Py(1)-Pe(1)                 Branched polymer indicates that the molar ratio of the 

Py unit to the Pe unit is 1:1 

Py(6)-Pe(0)                 Branched polymer indicates that the molar ratio of the 

Py unit to the Pe unit is 6:0 

Py(0)-Pe(1)                 Branched polymer indicates that the molar ratio of the 
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Py unit to the Pe unit is 0:1 

AQA                    2-Anthraquinonecarboxaldehyde 

Py(6)-Pe(1)-AQ(2)         Branched polymer indicates the molar ratio of the Py, Pe, 

and AQ units; the ratio in Py(6)-Pe(1)-AQ(2) is 6:1:2  

1, 2, 3THB                 Pyrogallol (1, 2, 3- trihydroxybenzene) 

1, 3, 5THB             Phloroglucinol (1, 3, 5- trihydroxybenzene) 

THB (non)                 Benzene type polymer prepared by trihydroxybenzene 

with benzaldehyde-2-sulfonic acid sodium salt 

THB (Pe)                  Benzene type polymer containing Pe unit 

THB (AQ)                 Benzene type polymer containing AQ unit 

THB (Pe-AQ)              Benzene type polymer containing Pe unit and AQ unit 

ester (Pe-AQ)               Ester type polymer containing Pe unit and AQ unit 

ester (Pe)- THB (AQ)        A, B-block type polymers having different energy levels 

containing Pe unit in ester part (high energy level) and 

AQ unit in THB part (low energy level) 

ester (AQ)-THB (Pe)        A, B-block type polymers having different energy levels 

containing AQ unit in ester part (high energy level) and 

Pe unit in THB part (low energy level) 
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Fossil fuels and global warming 
There are three major forms of fossil fuels: coal, oil and natural gas. All three were 

formed many hundreds of millions of years ago before the time of the dinosaurs – hence 

the name fossil fuels. Now, total available energy from fossil fuels is 300 ~ 400 times 

the total amount of energy by human use.1 At the same time the science and technology 

are developing, large amounts of fossil fuel are used. On the other hand, by use of fossil 

fuel, a huge CO2 is discharged. At the same time as the reduction of fossil fuels, it has 

been a rapid increase of the concentration of CO2 in atmosphere. 

We know the global warming is mostly being caused by human activities, mainly 

increasing concentrations of greenhouse gases such as methane and CO2.2 Changes 

resulting from global warming may include rising sea levels due to the melting of the 

polar ice caps, as well as an increase in occurrence and severity of storms and other 

severe weather events. For the environment, the mitigation of global warming is needed. 

In order to mitigate global warming, we can reduce greenhouse gas emissions, or 

absorb greenhouse gas from the atmosphere. There is a large potential for future 

reductions in emissions by a combination of activities, including: energy 

conservation and increased energy efficiency; the use of low-carbon 

energy technologies, such as renewable energy, nuclear energy, and carbon capture and 

storage.3-4 

Now, it has attracted attention in solar energy of the renewable energy. Solar energy is 

radiant light and heat from the Sun that is harnessed using a range of ever-evolving 

technologies such as solar heating, photovoltaics, solar thermal energy, solar 

architecture and artificial photosynthesis.5-8  Artificial photosynthesis light energy 

conversion systems have been studied worldwide, in order to develop this system, it is 

essential to understanding the natural photosynthesis system. 

 

Natural photosynthesis 
Photosynthesis is a process used by plants to convert light energy into chemical 

energy that can be used for the organisms’ activities. This chemical energy is stored 

in carbohydrate molecules which are synthesized from CO2 and H20.9 Photosynthesis 

occurs in two steps. In the first step, light-dependent reactions capture the light energy 
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and use it to make the energy storage molecules ATP and NADPH. The second step, 

the light-independent reactions use these products to capture and reduce CO2. In the 

light-dependent reaction, efficiently collect the light energy is very important in 

photosynthesis. Photosynthetic cells contain special pigments to absorb light energy. 

Different pigments respond to different wavelengths of visible light. In plants, 

photosynthesis takes place in chloroplasts, which contain the chlorophyll. Chloroplasts 

are surrounded by a double membrane and contain a third inner membrane, called the 

thylakoid membrane10 that forms long folds within the organelle. Chlorophyll, the 

primary pigment used in photosynthesis, reflects green light and absorbs red and blue 

light most strongly.11The majority of light energy can be available absorbed by the 

chlorophyll and other pigments. 

The absorption of light energy and its conversion into chemical energy occurs in 

multiprotein complexes, called photosystems, located in the thylakoid membrane. A 

photosystem has two closely linked components, an antenna containing light-absorbing 

pigments and a reaction center comprising a complex of proteins and two chlorophyll 

a molecules. Each antenna contains one or more light-harvesting complexes (LHCs), 

packed with chlorophyll a and, depending on the species, chlorophyll b and other 

pigments. LHCs promote photosynthesis by increasing absorption of 680 nm light and 

by extending the range of wavelengths of light that can be absorbed. Photons can be 

absorbed by any of the pigment molecules in each LHC. The absorbed energy is then 

rapidly transferred (in 10−9 s) to one of the two chlorophyll a molecules in the 

associated reaction center, where it promotes the primary photosynthetic charge 

separation. Within an LHC are several transmembrane proteins whose role is to 

maintain the pigment molecules in the precise orientation and position that are optimal 

for light absorption and energy transfer, thereby maximizing the very rapid and efficient 

process known as resonance transfer of energy from antenna pigments to 

reaction-center chlorophylls. As depicted in Figure 1, some photosynthetic bacteria 

contain two types of LHCs: the larger type (LH1) is intimately associated with a 

reaction center; the smaller type (LH2) can transfer absorbed light energy to an 

LH1.12-13 
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Then the energy of the light captured by LHCs is funneled to the two chlorophylls in 

the reaction center, where the primary events of photosynthesis occur. The energy of the 

absorbed light is used to remove electrons from a donor (H2O), forming O2, and then to 

transfer the electrons to an electron acceptor (quinone), at last transfer the electrons to 

the cytochrome b6f complex. This process called photosystem II.14-15 

H2O → O2 + 4H+ + 4e- 

Electrons move from the cytochrome b6f complex electron acceptor through a chain 

of electron transport molecules in the thylakoid membrane until they reach the ultimate 

electron acceptor, usually NADP+, reducing it to NADPH. This process called 

photosystem I.16 

NADP+ + 4H+ + 4e- → NADPH 

Photosystem II and photosystem I are combined by the cytochrome b6f complex, to build 

a multi-step electron transfer mechanism, called the Z scheme shown in Figure 2, to 

form a long distance and long life charge-separated state, and the electrons are used in 

the synthesis of NADPH. 17 

2H2O + 2NADP+ → 2H+ + 2NADPH + O2 

It is convenient to divide the photosynthetic process (light-dependent reaction) in 

Figure 1. The structure of the bacterial light-harvesting complex LH2 suggests how 
absorbed light energy passes through the similar LH1 complex to its final destination, the 
special pair of bacterionchlorophylls in the reaction centre (RC), where it is used to propel 
an electron across the membrane.13 
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Figure 2. The Z scheme. 
 

plants into three stages 11, 18, 19: 

(1) Light harvesting which involves the absorption of sunlight to excite electrons in 

peripheral antennae of the photosynthetic systems and subsequent rapid excitation 

energy transfer to reaction centers 

(2) Photoinduced electron transfer, which generates charge-separated states using this 

excitation energy. 

(3) Using the electrons leading to the reduction of NADP+ to NADPH. 

 

 

 
Artificial photosynthesis 
Artificial photosynthesis is an artificial process that replicates the natural process 

of photosynthesis. Artificial photosynthesis that liking as natural photosynthesis, 

converts sunlight, H2O, and CO2 into carbohydrates and O2 by using artificial process. It 

is commonly used to refer to any scheme for capturing and storing the energy from 

sunlight. 
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Since the artificial photosynthesis was first anticipated by Giacomo Ciamician in 

1912,8 the growth of artificial photosynthesis is rapid.20-24 Now, based on the principle 

of artificial photosynthesis, there are two types of the artificial photosynthesis systems 

in the world: (a) Artificial photosynthesis system of water decomposition by using 

semiconductor; (b) Artificial photosynthesis system of water decomposition by using 

organic compounds which learning light-dependent reaction in the photosynthesis. 

Type (a) 

In 1972, Akira Fujishima discovered the photocatalytic properties of titanium dioxide, 

the so-called Honda-Fujishima effect,25 which could be used for hydrolysis. In addition, 

in recent years Panasonic has developed an artificial photosynthesis system which 

converts CO2 to organic materials by illuminating with sunlight at an efficiency of 0.2% 

by using nitride semiconductor and metal catalyst.26 Toshiba has also developed an 

artificial photosynthesis technology that converts energy into carbon compounds from 

carbon dioxide at an efficiency of 1.5% by using multijunction semiconductor and gold 

nanocatalyst, the highest level yet recorded.27  

Type (b) 

By the study of natural photosynthesis (light-dependent reaction), we know there are 

three subjects can be used to realize the artificial photosynthesis: 

Subject(1) Harvesting photon by the antenna molecules and transferring to the reaction 

center. (photoinduced energy transfer) 

Subject(2) Preventing the charge recombination after the photoinduced electron transfer 

leading to form a long live charge-separated state efficiently. 

Subject(3) Using the charge-separated state to the multi-redox reaction. 

 Many studies are studying on these subjects. For example, light harvesting28-34 has 

been studied on the subject (1). Donor-acceptor systems35-41 has been studied on the 

subject (2). Ruthenium complex systems42-47 has been studied on the subject (3).  

 

The objective of this study 
 The objective of this study is to realize the artificial photosynthesis by learning 

light-dependent reaction in the photosynthesis. There are three subjects as mentioned 

above can be used to realize the artificial photosynthesis. In this study, various kinds of 
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structure-controlled polymers were prepared, and their applications to artificial 

photosynthesis by using these polymers are examined. 

A brief summary for syntheses of structure-controlled polymers and their applications 

to artificial photosynthesis are as follows: 

 

In Chaper 1, involving Section 1, 2, 3, and 4, structure-controlled polymers prepared 

by pseudo-living addition-condensation polymerization of methylpyrrole with aldehyde 

and their application to study on subject (1) for artificial photosynthesis are described. 

In Chaper 2, involving Section 1 and 2, syntheses of benzene type polymers and their 

application to study on subject (2) for artificial photosynthesis are described. 

 

Section 1-1. A new type of pseudo-living addition-condensation polymerization   
 In general condensation-polymerization, e.g., the synthesis of polyesters and 

polyamides, the reactivities of the dimer, oligomer, and polymer are almost 

thermodynamically equal to that of the monomer. Therefore, 

condensation-polymerization is a form of step-growth polymerization, and control of 

the molecular weight and polymer structure are difficult because of the equal reactivity. 

In this section, a new type of pseudo-living addition-condensation polymerization was 

studied. The difference in the reactivity of the monomer and the other mers in the 

addition-condensation polymerization of pyrrole and aldehyde leads to precision 

polymerization, which allows for the control of the main structural properties of the 

polymer as well as the introduction of functional groups by the addition of different 

aldehydes. 

 

 

Section 1-2. A, B-block amphiphilic polymer for interphase photoinduced energy 

transfer 

In this section, an A, B-block amphiphilic polymer with energy donors and acceptors, 

each in a different block was prepared by the pseudo-living addition-condensation 

polymerization. The ability for a reaction to occur at the interphase is an important 

component in the construction of an artificial photosynthetic system because it allows 
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for efficient separation of high energy substances generated by photochemical reactions. 

This type of polymer showed an interphase photoinduced energy transfer in a micellar 

system. 

 

Section 1-3. Synthesis and characterization of branched polymers and efficient 

light-harvesting ability 

Harvesting photon by the antenna molecules and transferring to the reaction center is 

the initial step of natural photosynthesis. Antenna chlorophyll, the primary pigment used 

in photosynthesis, the absorbed energy is rapidly transferred (in 10−9 s) between 

chlorophylls, and then transfer to a molecules in the associated reaction center. In this 

section, a branched polymer with high and low amounts of energy donors and acceptors 

was prepared by the pseudo-living addition-condensation polymerization. This type of 

polymer showed an efficient light-harvesting ability. 

 

Section 1-4. Light-harvesting and electron transfer in a branched polymer for 

artificial photosynthetic antenna-reaction centers 

The initial steps toward designing artificial reaction centers based on efficient 

light-harvesting have been studied in Section 1-3. In this section, another type of 

branched polymer was prepared by the pseudo-living addition-condensation 

polymerization to continue study of artificial photosynthesis. This branched polymer 

exhibits light-harvesting antenna parts, energy transfer to the polymer center, and 

electron transfer, as a simple model of an artificial photosynthetic system. 

 

 

 

Section 2-1. Syntheses of benzene type step-π-conjugated polymer and study on 

photoinduced electron transfer 

In order to realize the artificial photosynthesis, preventing the charge recombination 

after the photoinduced electron transfer leading to form a long live charge-separated 

state efficiently is necessary. For a long live charge-separated state, there is a concept 

that is capable of molecular wire of long-range electron transfer system. Electron donor 
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and electron acceptor is bound with π-conjugated compound, the electron from the 

donor through the π-conjugated system to the acceptor, the long range electron transfer 

can prevent the charge recombination. In this section, we defined a step-π-conjugated 

polymer which alternately consists of a small π-conjugated molecule as like as a 

benzene unit and a sp3-methine carbon. The benzene units have no coplanar each other. 

Therefore, no strong interaction exists between benzene units; however, superexchange 

and / or hopping of electrons occur. The polymer can work as a molecular wire with 

high efficiency electron transfer.  

 

Section 2-2. Synthesis of A, B-block type polymers having different energy levels 

and study on photoinduced electron transfer  
In order to form a long live charge-separated state, a multi-stage electron-transfer 

system based on Z scheme mimics has been studied. In this section, the long-range 

photoinduced electron transfer was considered using step-π-conjugated polymers with 

two different energy level blocks. The structure was controlled that donor was in high 

energy level part (A-block), and acceptor was in low one (B-block). The 

macromolecular wire with the different energy levels (A, B-block polymer) suggests an 

electron transfer with a one-way direction. It can form a long live charge-separated state 

by using this polymer. 
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CHAPTER 1 
 

Structure-controlled polymers prepared by 
pseudo-living addition-condensation polymerization of 
methylpyrrole with aldehyde and their application to 

artificial photosynthesis 
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Section 1-1 
 

A new type of pseudo-living addition-condensation polymerization  
 

1-1-1. Introduction  

Addition-condensation polymerization is generally used in an industrial field of phenol 

formaldehyde resin, urea-formaldehyde resin, and so on. While in a special field, 

poly(pyrrolylenemethine) and its derivatives, which were prepared by the 

addition-condensation polymerization of pyrrole and aldehyde, were studied as 

narrow-band-gap polymers.1-9 In our recent study, we showed that the water-soluble 

narrow-band-gap polymer with band-gap value of less than 0.19 eV 8 and the band-gap 

values were continuously controlled from 0.3 to 1.1 eV in aqueous solution.9 This 

addition-condensation of pyrrole and aldehyde is also very familiar in the field of 

porphyrin synthesis.10-13 Lindsey group has been considerably contributed in the 

porphyrin synthesis. In one of their studies, they showed that the reactivity of α-position 

of dipyrromethane was much higher than that of pyrrole.13 This result is very important 

and interesting in the addition-condensation polymerization. Because this means that the 

reactivity of dimer, oligomer, and polymer is higher than that of monomer. The different 

reactivity of monomer and others can lead to a precision polymerization as follows. In 

the general condensation-polymerization, for example polyesters and polyamides, the 

reactivity of dimer, oligomer, and polymer is almost thermodynamically equal to that of 

monomer. Therefore, the condensation-polymerization is a form of step-growth 

polymerization and the control of molecular weight and polymer structure is difficult 

because of the equal reactivity. On the other hand, precision polymerizations have been 

studied in living anionic,14-15 living cationic,16-17 living free-radical,18-21 and living 

ring-opening metathesis polymerizations.22-25 These polymerizations are a form of 

chain-growth polymerization. Here, as a special precision polymerization, living 

chain-growth polycondensation has been studied.26-29 In this 

condensation-polymerization, the reactivity of polymer end group to monomer is higher 

than that of monomer to monomer. Therefore, monomer preferentially reacts with the 

polymer end groups. In other words, the different reactivity of monomer and others in 
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the addition-condensation polymerization of pyrrole and aldehyde can lead to the 

precision polymerization which is able to not only control polymer main structures, but 

also introduce functional groups by using different aldehydes.  

In this section, we show the pseudo-living addition-condensation polymerization of 

1-methylpyrrole (MePyr) and some aldehydes. We used MePyr instead of pyrrole 

because the resulting polymer prepared from MePyr is stable in air while that of pyrrole 

is not. The linear relationship of the Mw and the added amount of monomers means that 

this polymerization progresses like a living-polymerization. 

 
 

 
1-1-2. Experimental 
 

1-1-2-1. Materials 

1-Methylpyrrole (MePyr), benzaldehyde-2-sulfonic acid sodium salt (BS), 

2-ethylpyrrole (2-EtPyr), and 3-perylenecarboxaldehyde (PeA) were purchased from 

Tokyo Kasei Chemical Co., Ltd. p-Toluenesulfonic acid monohydrate (p-TS), and other 

reagents and solvents were purchased from Wako Pure Chemical Industries, Ltd. Unless 

stated otherwise, reagents and solvents were used without purification. 1-Methylpyrrole 

(Tokyo Kasei Chemical Co., Ltd., Tokyo, Japan) as a monomer was purified by 

distillation.  

 

 

1-1-2-2. Measurements 

The UV-Vis spectra were recorded on a V-670 spectrophotometer (JASCO). 

Fluorescence spectra were recorded on a FP-8300 spectrophotometer (JASCO). 
1H-NMR spectra were recorded on a JEOL ECS-400 spectrometer (JEOL) working at 

400MHz using TMS as the internal standard. DMSO-d6 was used as the solvent for the 

polymer. 
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1-1-2-3. Polymerization 

The polymerization of MePyr and equimolar BS: 

MePyr (36.0 mmol) and BS (36.0 mmol) were dissolved in DMF (18 mL). A second 

solution containing p-TS (1.20 mmol, 18 mL DMF) was added to this solution at 10 °C. 

The resulting solution was divided into 16 equal parts. After 5 min, a portion of the 

resulting solution was poured into isopropyl alcohol (45 mL) with potassium hydroxide 

(KOH, 0.90 mmol). The resulting precipitate was washed with isopropyl alcohol and 

lyophilized (yield: 0.171 g, 35.0%). Other polymers obtained at different times were 

similarly prepared. 

 
The pseudo-living addition-condensation polymerization of MePyr with BS by the 

continuous addition of monomers: 

MePyr-BS (8 day) was prepared as follows:  

Solution-A: MePyr (5.00 mmol), p-TS (0.167 mmol) in DMF (2.0 mL). 

Solution-B: BS (2.5 mmol) in DMF (3.0 mL) 

Solution-C: p-TS (1.33 mmol) in DMF (1.5 mL) 

Solution-D: BS (17.5 mmol) and MePyr (17.5 mmol) in DMF (20 mL) 

 

Solution-A was stirred (300 rpm) at 10 °C. Solution-B was continuously added to 

Solution-A for 24 h using a syringe driver (YSP-101, YMC Co., Ltd.). Then, Solution-C 

and Solution-D were simultaneously and continuously added for 168 h. The reaction 

was stopped by the addition of a sodium carbonate aqueous solution (5%, 3.2 mL) at 

192 h. Isopropyl alcohol (240 mL) was added to the reaction mixture. The resulting 

precipitate was purified by reprecipitations from two times of DMF/isopropyl alcohol 

(48 mL/240 mL) and two times of water/isopropyl alcohol (36 mL/240 mL), and then 

dissolved in water. The polymer was obtained by freeze-drying (3.619 g, 66.7%). The 

other polymers were similarly prepared. 
 

1H NMR spectrum of MePyr-BS (8 day) polymer: Figure 1-1-2-1 shows the chemical 

structure and the NMR spectrum of MePyr-BS (8 day) polymer. Although the spectrum 

broadening is observed in the polymer, it also showed the signals of the polymer proton. 
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The peaks (6.47, 4.94 and 2.95 ppm) assigned to MePyr protons (a: terminal, b and d). 

The peaks (7.08 and 7.73 ppm) assigned to BS protons (e and f).  

The number-average molecular weight was estimated by the signal intensity ratio of the 

terminal α-proton (a) and another proton attached to the benzene ring adjacent to the 

sulfo group (f). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1-1-3. Results and discussion 
1-1-3-1. Normal addition-condensation polymerizations of 1-methylpyrrole 

(MePyr) and aldehydes 

(a) Concept of reaction 

Step-1 Addition 

In Figure 1-1-3-1a, the reaction starts by proton attack at the oxygen of the formyl 

123456789
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Figure 1-1-2-1. 1H-NMR spectrum of MePyr-BS (8day) polymer in DMSO-d6.  
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Figure 1-1-3-1. Basic addition-condensation polymerization of 1-methylpyrrole and aldehyde. 
 

group, generating a carbocation (Cation-A). Cation-A then attacks the α-position of 

MePyr because the electron density is higher at the α-position than the β-position. 

However, the reactivity of Cation-A is low because it has a hydroxyl group, which is an 

electron donating group. This lower reactivity leads to a high selectivity for the reaction. 

Step-2 Condensation 

In Figure 1-1-3-1b, the MePyr-alcohol generated in Step-1 reacts with a proton, which 

allows water to leave, thus forming a new carbocation (Cation-C). Cation-C also attacks 

the α-position of MePyr and generates dipyrromethane. Here, the reactivity of Cation-C, 

which has no hydroxyl group, is much higher than that of Cation-A. Therefore, there is 

a lower selectivity for the reaction. This higher reactivity leads to a kinetic, rather than 

thermodynamic, driving force.  
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(b) Reactivity ratios of dipyrromethane and 2-ethylpyrrole to MePyr in addition 

 

Normal 

A solution of MePyr (5.00 mmol) and p-toluenesulfonic acid monohydrate (p-TS, 0.167 

mmol) was prepared in dimethylformamide (DMF, 2.5 mL) and then mixed with 

another solution of 3-perylenecarboxaldehyde (PeA, 0.025 mmol, 2.5 mL DMF) at 

10 °C. The reaction of PeA with MePyr was then spectroscopically monitored (Figure 

1-1-3-2a). This reaction is pseudo-first order because of the excess amount of MePyr. 

The first order plot is shown in Figure 1-1-3-3. The rate constant estimated from the 

slope is 4.2 × 10-5 s-1. 

 

1/1000 of the amount of dipyrromethane 

MePyr (5.00 mmol), benzaldehyde-2-sulfonic acid sodium salt (BS, 0.005 mmol), and 

p-TS (0.167 mmol) were dissolved in DMF (2.5 mL) and kept at 10 °C for 30 min. 

NMR confirmed that no BS remained, indicating a complete conversion. A solution of 

PeA (0.025 mmol, 2.5 mL DMF) was added to the MePyr solution containing 1/1000 of 

the amount of dipyrromethane at 10 °C. The reaction of PeA with MePyr and 1/1000 of 

the amount of dipyrromethane was then monitored by spectroscopic measurement 

(Figure 1-1-3-2b), and the first order plot is shown in Figure 1-1-3-3a. The rate constant 

estimated from the slope is 5.2 × 10-5 s-1. 

 

1/100 of the amount of 2-ethylpyrrole 

MePyr (5.00 mmol), 2-ethylpyrrole (2-EtPyr, 0.05 mmol), and p-TS (0.167 mmol) were 

dissolved in DMF (2.5 mL). Another solution of PeA (0.025 mmol, 2.5 mL DMF) was 

added to the first solution at 10 °C. The reaction of PeA with MePyr and 1/100 of the 

amount of 2-EtPyr was then spectroscopically monitored (Figure 1-1-3-2c), and the first 

order plot is shown in Figure 1-1-3-3b. The rate constant estimated from the slope is 6.9 

× 10-5 s-1. 
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Reactivity ratio 

The rate constants for MePyr, dipyrromethane, and 2-EtPyr are represented as M, D, 

and E, respectively. 

M = 4.2 × 10-5 s-1 

From the 1/1000 of the amount of dipyrromethane system:  

0.998 M + 1/1000 D = 5.2 × 10-5 s-1 

Therefore, D = 1.0 × 10-2 s-1 

The reactivity ratio of D/M = 1.0 × 10-2 s-1 / 4.2 × 10-5 s-1 = 240 

 

From the 1/100 of the amount of 2-EtPyr system: 

M + 1/100 E = 6.9 × 10-5 s-1 

Therefore, E = 2.7 × 10-3 s-1 

The reactivity ratio of E/M = 2.7 × 10-3 s-1 / 4.2 × 10-5 s-1 = 64 

 

 

 

 

 

 

 

 

 

Figure 1-1-3-2. Absorption spectra at different reaction times for PeA (0.025 mmol) with (a) 
MePyr (5.00 mmol), (b) MePyr (5.00 mmol) and BS (0.005 mmol), and (c) MePyr (5.00 mmol) 
and 2-EtPyr (0.050 mmol) dissolved in DMF at 25 °C, cell length=1 cm. 
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(c) Polymerization data 

The polymerization of MePyr and equimolar BS: 

The molecular weight was roughly determined by viscosity and NMR measurements. 

The number-average molecular weight was estimated by the signal intensity ratio of 

terminal α-proton and another proton attached to the benzene ring adjacent to the sulfo 

group (Figure 1-1-2-1). The Mark-Houwink-Sakurada formula was used to relate the 

viscosity and molecular weight: 

[η]＝KMα, K = 1.21 × 10-3, α = 0.464. 

Here, we used [η]sp/c at 0.40 g/dL instead of [η] because [η]sp/c is almost constant at 

different concentrations in phosphate buffer (0.025 M KH2PO4 and 0.025 M 

Na2HPO4・12H2O). 

Figure 1-1-3-4a shows the conversion-time curve. The conversion proceeded rapidly 

until 20 min (conversion of 67%), slowly increased from 20 to 60 min (conversion of 

87%), and then became almost constant. Conversely, in the MW-conversion curve 

shown in Figure 1-1-3-4b, the MW gradually increased until 80% conversion was 

reached because the propagation reaction is very much like a chain-growth 

Figure 1-1-3-3. First-order plots for the reaction of PeA (0.025 mmol) with MePyr (5.00 
mmol) (a) in the presence and absence of BS (0.005 mmol); (b) in the presence and absence of 
2-EtPyr (0.050 mmol). 
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Figure 1-1-3-4. (a) Conversion-time curve and (b) MW-conversion curve of the polymerization 
of MePyr and BS. 
 
 

polymerization. Then the MW steeply increased at conversions above 80%, acting more 

like the step-growth polymerization of polyamide. Finally, the MW became constant 

because no further reactions occurred between the slow moving, high MW polymers. 

 

 

 

 

1-1-3-2. Pseudo-living addition-condensation polymerization by continuous 

addition of monomer 

 

(A) Concept of basic reaction  

In the addition-condensation of MePyr and aldehyde in the presence of acid, a 

rate-determining step is the addition of aldehyde to the α-position of MePyr shown in 

step-1 in Figure 1-1-3-5b and Figure 1-1-3-1a. The reactivity of following condensation, 

step-2, is higher than that of step-1. Therefore, the addition occurs with high selectivity. 

Moreover, the electron density of the α-position of a generated dipyrromethane is higher 

than that of MePyr. As a result, the reactivity of α-position of generated dipyrromethane 

is 240 times higher than that of MePyr at 10°C. When the 1% of dipyrromethane 

generate in the initial sage of the polymerization, the reactivity ratio of dipyrromethane 

to MePyr becomes about 2.4. In other words, the growing-active-point in Addition 
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(g-A), which is defined as a α-position of dipyrromethane, oligomer, and polymer 

shown in red-dot in Figure 1-1-3-5 increases at initial stage. However, the g-A 

immediately becomes almost constant at low concentration because the propagation 

reaction of the g-A to aldehyde occurs more predominantly than the reaction of MePyr 

to aldehyde shown in Figure 1-1-3-5d. No reaction of MePyr to aldehyde means no 

generation of a new g-A. While in the condensation, the growing-active-point in 

Condensation (g-C) shown in blue-dot in Figure 1-1-3-5 is defined as the carbon 

attached with hydroxy group generated by addition of aldehyde. The reaction of the g-C 

to the g-A is thermodynamically preferential. However, this reaction is preventable as 

follows: The higher reactivity of the g-C means low selectivity. Therefore, the collision 

of the g-C to MePyr is more important. In the initial and middle stages of the 

polymerization, the g-C is low concentration as same as the g-A mentioned above. On 

the other hand, a large amount of MePyr is present in these stages. Moreover, the 

polymers move slowly because of a high molecular weight (Mw). That is the collision 

between polymers is very rare. While the collision between polymer and MePyr occurs 

easily because of the large amount and rapid-moving of MePyr. Therefore, the 

propagation reaction occurs dynamically and more predominantly than the 

polymer-polymer reaction does shown in Figure 1-1-3-5e. That is this 

addition-condensation of MePyr with aldehyde progresses like a chain-growth 

polymerization in the initial and middle stages. Of course, the polymer-polymer reaction 

occurs in the final stage shown in Figure 1-1-3-6(iii) because of the low concentration 

of MePyr. These concepts agree with the experimental result for the polymerization of 

MePyr and equimolar benzaldehyde-2-sulfonic acid sodium salt (BS) mentioned in 

1-1-3-1. In the conversion-time curve shown in Figure 1-1-3-4a, the conversion steeply 

increased until 20 min (conversion 67%), slowly increased up to 60 min (conversion 

87%), and became almost constant. While in the Mw-conversion curve shown in Figure 

1-1-3-4b, the Mw gradually increased with the conversion until 80% because of the 

propagation reaction like the chain-growth polymerization. However, the Mw steeply 

increased over 80% conversion like the step-growth polymerization of polyamide. 

Finally, the Mw became constant because of no reaction occurred between high Mw 

polymers because of very slow-moving. 
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Figure 1-1-3-5. Reaction mechanism of the pseudo-living addition-condensation 
polymerization of 1-methylpyrrole and aldehyde. 
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(B) Pseudo-living polymerization by continuous addition of monomer 

The control of MePyr amount is important in this polymerization. We controlled the 

MePyr amount as follows.  

Initial stage: Aldehyde was slowly added to the excess amount of MePyr. Then 

dipyrromethane and oligomer generated shown in Figure 1-1-3-6b(i).  

Progress stage 1: Continuous addition of aldehyde was conducted until half amount of 

initial stage
reaction of 

monomer-monomer

progress stage 1
continuous addition of 

aldehyde until half 
amount of methylpyrrole

progress stage 2
continuous addition of 

methylpyrrole and 
aldehyde to prevent 
polymer-polymer 

reaction

m

n
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Figure 1-1-3-6. Image for the different reaction systems: (a) normal (b) pseudo-living 
addition-condensation polymerizations. 
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MePyr shown in Figure 1-1-3-6b(ii). The added aldehyde with rapid-moving reacted at 

the g-A predominantly, then the generated g-C was attacked immediately by the large 

amount MePyr and became the larger g-A illustrated in Figure 1-1-3-5d-e . Moreover, 

this immediate reaction of the g-C with MePyr is important to prevent the termination 

which occurs by the side reaction shown Figure 1-1-3-1d.  

Progress stage 2: After the half amount addition, both aldehyde and equimolar MePyr 

were continuously added shown in Figure 1-1-3-6b(iii). The ratio of the g-A to MePyr 

was kept at almost constant during the polymerization. The polymer-polymer reaction 

was prevented by the rapid-moving and large amount of MePyr. That is the propagation 

reaction continues like a living-polymerization under the continuous addition of both 

monomers.  

 

(C) Polymerization data:  

The conversions and molecular weights of the obtained polymers are shown in Table 

1-1-3-1. The molecular-weight-distribution of the polymer obtained at 8 days was 

roughly estimated as follows: the MePyr-BS (8 day) polymer (1.00 g) was dissolved in 

water (8.0 mL), then the large polymer (0.276 g, 25.4%, MW = 90000 g/mol), middle 

polymer (0.293 g, 27.1%, MW = 42000 g/mol), and small polymer (0.252 g, 23.2%, 

Mw = 18000 g/mol) were obtained using 16.6, 24.4, and 33.3 mL of isopropyl alcohol, 

respectively. 

The ratios for the polymer weights are: wL = 25.4/23.2 = 1.09, wm = 27.1/23.2 = 1.17, 

and ws = 1. 

Mn=
Σ Ni Mi

Σ Ni
= 

Σ wi
Mi

Mi

Σ wi
Mi

= 
Σ wi

Σ wi
Mi

 

Mw= 
Σ Ni Mi

2

Σ Ni Mi
= 

Σ wi
Mi

 Mi
2

Σ wi
= 

Σ wi Mi

Σ wi
 

 

Mn = (1.09 + 1.17 + 1) / [(1.09 / 90000) + (1.17 / 42000) + (1 / 18000)] = 34000 

Mw = (1.09 × 90000 + 1.17 × 42000 + 1 × 18000) / (1.09 + 1.17 + 1) = 51000 

Mw / Mn = 51000 / 34000 = 1.50 
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Figure 1-1-3-7 shows the Mw-time curve of the polymerization of MePyr and BS. 

Here, the Progress stage 2 was carried out after 1day. The linear relationship of the Mw 

and the added amount of monomers means that this polymerization progresses like a 

living-polymerization.14-29 The molecular-weight-distribution of the polymer obtained at 

8 days was roughly estimated at the value of 1.5. This higher value means that the 

polymerization is a pseudo-living not an intrinsic living-polymerization with the value 

of near 1.0.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 
 

 

 

 

Figure 1-1-3-7. MW-time curve for the pseudo-living addition-condensation polymerization of 
MePyr and BS with the continuous addition of monomers. 
 

[η]sp / C MW Conversion %
1 day 0.07 6800 63.2
2 day 0.10 15000 65.9
4 day 0.13 25000 63.5
6 day 0.15 37000 62.7
8 day 0.18 53000 66.7

Table 1-1-3-1. Conversions and molecular weights of the polymers. 
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1-1-4. Conclusions 
 

 In Section 1, we have shown a new type of pseudo-living polymerization by 

continuous addition of monomers to the addition-condensation of 1-methylpyrrole and 

aldehydes. Typically, precision polymerizations, which allow for structure-controlled 

polymers, are very tedious because they require severe experimental conditions. 

However, our new synthesis method does not require any special precautions. 

Additionally, this pseudo-living addition-condensation polymerization is able to control 

the polymer main structures. The pseudo-living polymerization can lead to the easy 

preparation of structure-controlled polymers by different monomers.  
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Section 1-2 
 

A, B-block amphiphilic polymer for interphase photoinduced 
energy transfer 

 

 
1-2-1. Introduction  

 Photosynthesis is carried out by pigments and electron donor and acceptor moieties 

housed within proteins, which are in turn associated with biological membranes. 

Typically, these moieties include chlorophylls and their relatives, quinones, and 

carotenoid. They interact by two basic photochemical processes: energy transfer, and 

photoinduced electron transfer. For example, antenna systems consisting of chlorophylls, 

carotenoids, and other pigments collect light and conduct excitation to the reaction 

center via singlet-singlet energy transfer.1-4 Then, in photosynthetic reaction centers, 

excited chlorophyll, resulting from sunlight absorption, donates an electron to nearby 

chlorophyll, beginning an electron transfer cascade that moves electrons through a 

series of acceptors to quinones which transforms excitation energy into electrochemical 

energy in the form of long-lived, transmembrane charge separation is at the heart of 

photosynthetic energy conversion.5-8 Accordingly, the ability for a reaction to occur at 

the interphase can be used in the construction of an artificial photosynthetic system 

because it allows for efficient separation of high energy substances generated by 

photochemical reactions.9-10 In this section, in order to construct the artificial 

photosynthetic system, an A, B-block amphiphilic polymer with energy donors and 

acceptors, each in a different block was prepared by the pseudo-living 

addition-condensation polymerization. An interphase photoinduced energy transfer in a 

micellar system has been studied. 
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1-2-2. Experimental 
 

1-2-2-1. Materials 

1-Methylpyrrole (MePyr), benzaldehyde-2-sulfonic acid sodium salt (BS), 

2-ethylpyrrole (2-EtPyr), 4-isopropylbenzaldehyde (iPB) and 3-perylenecarboxaldehyde 

(PeA) were purchased from Tokyo Kasei Chemical Co., Ltd. 1-Pyrenecarboxaldehyde 

(PyA), p-toluenesulfonic acid monohydrate (p-TS), Triton X and other reagents and 

solvents were purchased from Wako Pure Chemical Industries, Ltd. Unless stated 

otherwise, reagents and solvents were used without purification. 1-Methylpyrrole 

(Tokyo Kasei Chemical Co., Ltd., Tokyo, Japan) as a monomer was purified by 

distillation.  

 

 

1-2-2-2. Measurements 

The UV-Vis spectra were recorded on a V-670 spectrophotometer (JASCO). 

Fluorescence spectra were recorded on a FP-8300 spectrophotometer (JASCO). 
1H-NMR spectra were recorded on a JEOL ECS-400 spectrometer (JEOL) working at 

400MHz using TMS as the internal standard. DMSO-d6 was used as the solvent for the 

polymer. 

 

 

1-2-2-3. Polymerization 

A, B-block amphiphilic polymer: 

Figure 1-2-2-1 shows the schedule for preparing the A, B-block amphiphilic polymer 

by the continuous addition of the monomer. 

 

Hydrophobic block Hydrophilic block

PyA(0.120 mmol) 
/ DMF(2.50 mL)8h

PeA(0.120 mmol)
/ DMF(3.50 mL)0h 52h24h 26h 42h 50h

MePyr (5.00 mmol)
2-EtPyr (0.100 mmol)
p-TS (0.500 mmol)
/ DMF (1.50 mL)

iPB(2.38 mmol) / DMF(1.50 mL) MePyr (2.50 mmol)  BS(2.38 mmol) / DMF(2.00 mL)

Step (1) Step (2) Step (3) Step (4)

initial

Figure 1-2-2-1. Schedule for the continuous addition polymerization of amphiphilic polymers. 
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iPB(Py)-BS(Pe) was prepared as follows:  

Solution-A: MePyr (5.00 mmol), 2-EtPyr (0.10 mmol), p-TS (0.50 mmol) in DMF (1.5 

mL). 

Solution-B: 4-isopropylbenzaldehyde (iPB, 2.38 mmol) in DMF (1.5 mL) 

Solution-C: 1-Pyrenecarboxaldehyde (PyA, 0.12 mmol) in DMF (2.5 mL) 

Solution-D: BS (2.38 mmol) and MePyr (2.50 mmol) in DMF (2.0 mL) 

Solution-E: 3-Perylenecarboxaldehyde (PeA, 0.12 mmol) in DMF (3.5 mL) 

 

Solution-A was stirred (300 rpm) at 30 °C. Solution-B was continuously added to 

Solution-A for 24 h. At the same time, Solution-C was also continuously added for 8 h. 

At 26 h, the reaction system was cooled to 10 °C. Solution-D was continuously added 

for 24 h. Then, at 42 h, Solution-E was continuously added for 8 h. The reaction was 

stopped by the addition of a sodium carbonate aqueous solution (5%, 1.2 mL) at 52 h. 

Isopropyl alcohol (80 mL) was added to the reaction mixture. The resulting precipitate 

was purified by two reprecipitations from DMF/isopropyl alcohol (6 mL/80 mL). A 

mixed solvent (THF:water = 9:1, 40 mL) was added to the resulting precipitate, and the 

insoluble substance was separated by filtration. The obtained solution was then dried by 

evaporation. The resulting polymer was dissolved in water (40 mL), and the insoluble 

part was separated by filtration. The final aqueous solution of the polymer, which is 

soluble in both THF:water = 9:1 and water, was freeze-dried (0.346 g, yield: 27.5%). 

The other polymers were similarly prepared. 
 

1H NMR spectrum of A, B-block amphiphilic polymer (iPB(Py)-BS(Pe)): Figure 

1-2-2-2 shows the chemical structure and the NMR spectrum of A, B-block amphiphilic 

polymer. The ratio of the hydrophobic part and hydrophilic part in the A, B-block 

amphiphilic polymer was 1.2:1, because the intensity ratio of signals of the iPB proton 

Hh (1.21 ppm) to the BS proton Hf (7.73 ppm) was 7.2:1. The peaks from 7.5 to 8.5 ppm 

assigned to Py and Pe protons (i and j). 
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Preparation of a micellar system: 
 An amphiphilic polymer (0.010 g) was dissolved in the emulsion solvent 

(water:toluene = 99:1, 1.0 g) with an ultrasonic homogenizer at 25 °C for 1 min. Then, 

the resulting solution (0.10 g) was diluted by another emulsion solvent (water:toluene = 

99:1, 10.0 g) using an ultrasonic homogenizer for 1 min at 25 °C. An aqueous solution 

of Triton X (water:Triton X = 9:1, 2.1 g) was added to the solution using an ultrasonic 

homogenizer for 1 min. Finally, a transparent and stable solution was obtained. The 
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Figure 1-2-2-2. 1H-NMR spectrum of A, B-block amphiphilic polymer in DMSO-d6.  
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other micellar systems were similarly prepared. 

 

 

1-2-3. Results and discussion 
 

1-2-3-1. The characteristics of A, B-block amphiphilic polymer  

 The structures of the aldehydes and 2-ethylpyrrole (2-EtPyr), which was used as the 

terminal unit, are shown in Figure 1-2-3-1a. The reactivity ratio of 2-EtPyr to MePyr is 

64:1 and is discussed in detail in the Section 1-1. Therefore, 2-EtPyr reacted in the 

initiation stage, and the polymer grew linearly in one direction. The image of 

preparation and the schedule of addition are shown in Figure 1-2-3-1b and Figure 

1-2-2-1, respectively. The sequential addition of monomers to 2-EtPyr and an excess 

amount of MePyr was conducted in the following order: Step (1), 

[4-isopropylbenzaldehyde (iPB) and 1-pyrenecarboxaldehyde (PyA)]; Step (2), [iPB]; 

Step (3), [BS and MePyr]; and Step (4), [BS, MePyr, and 3- perylenecarboxaldehyde 

(PeA)]. The details are discussed further in the 1-2-2-3. 

 In order to confirm that the A, B-block amphiphilic polymer existed on the 

heterophase boundary and the donor and the acceptor existed in different phases, 

fluorescence quenching was conducted using two quenchers: anthraquinone (AQ) as the 

toluene-soluble component and methylviologen (MV2+) as the water-soluble component. 

Two amphiphilic polymers were prepared containing Pe units either in the hydrophobic 

or hydrophilic phases. The preparation of a micellar system is discussed in 1-2-2-3. 

Figure 1-2-3-2b shows the fluorescence spectra of iPB(non)-BS(Pe) excited at 420 nm 

and dissolved in an emulsion solvent at 25 °C with an acceptor: AQ (1.5 × 10-2 M) (red 

line), MV2+ (10-4 M) (green line), or without an acceptor (blue line). The fluorescence 

quenching occurred only in the MV2+ system, which suggests that the Pe unit exists in 

the water phase (Figure 1-2-3-2c). However, the fluorescence quenching occurred only 

in the AQ system for iPB(Pe)-BS(none) (Figure 1-2-3-3b). The Pe unit exists in the 

toluene phase (Figure 1-2-3-3c). These results confirm that the A, B-block amphiphilic 

polymer existed on the heterophase boundary and the donor and acceptor moieties were 

in different phases. 
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Figure 1-2-3-1. Preparation of structure-controlled polymers by pseudo-living 
addition-condensation polymerization by the continuous addition of monomers. 
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Figure 1-2-3-3. (a) Absorption and (b) fluorescence spectra of iPB(Pe)-BS(none) dissolved in a 
water/toluene emulsion (118/1) including 1.8% Triton X at 25 °C with acceptor: anthraquinone 
[1.5 × 10-2 M] (red line), methylviologene [10-4 M] (green line), or without acceptor (blue line), 
[polymer]=0.083 g/L, excited at 420 nm, cell length=1 cm; (c) image of A, B-block 
amphiphilic polymers in a micellar system. 
 

 

 

 

 

  

Figure 1-2-3-2. (a) Absorption and (b) fluorescence spectra of iPB(none)-BS(Pe) dissolved in a 
water/toluene emulsion (118/1) including 1.8% Triton X at 25 °C with acceptor: anthraquinone 
[1.5 × 10-2 M] (red line), methylviologene [10-4 M] (green line), or without an acceptor (blue 
line), [polymer]=0.083 g/L, excited at 420 nm, cell length=1 cm; (c) image of A, B-block 
amphiphilic polymers in a micellar system. 
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1-2-3-2. A, B-block amphiphilic polymer for interphase photoinduced energy 

transfer 

A fluorescence quenching method was used to provide evidence that the prepared 

polymer exists at the heterophase boundary with the donor and acceptor groups 

positioned in the two different phases (shown in Figure 1-2-3-4a). Three reference 

polymers were made for this purpose: iPB(Py)-BS(Pe), iPB(Py)-BS(none), and 

iPB(none)-BS(Pe). The abbreviation iPB(Py)-BS(Pe) means that the Py unit is in the 

hydrophobic phase and the Pe unit is in the hydrophilic phase. Figures 1-2-3-4b, 

1-2-3-4c, and 1-2-3-4d show the absorption, fluorescence, and excitation spectra of the 

polymers, respectively. In the fluorescence spectra (λexc = 330 nm) in which the Py unit 

dominates, the fluorescence intensity of iPB(Py)-BS(Pe), which emits around 460 nm, 

is larger than that of iPB(none)-BS(Pe). Conversely, the intensity of iPB(Py)-BS(Pe), 

which emits around 400 nm, is smaller than that of iPB(Py)-BS(none). This strongly 

suggests that the interphase photoinduced energy transfer from the excited Py unit to the 

Pe unit occurs in the micellar system. In the excitation spectra monitored at 460 nm in 

which the Pe unit dominates, the intensity at around 330 nm of iPB(Py)-BS(Pe) is larger 

than that of the other polymers. This result confirms the occurrence of the interphase 

photoinduced energy transfer. 

 In Figure 1-2-3-4c, the fluorescence profiles of the Py unit are different from a general 

emission profile for monomeric Py. This change of the emission profile is due to a 

solvent effect and/or excimer generation. To clarify the cause of the change, 

Py-dipyrromethane was prepared, and fluorescence spectra were measured in different 

mixed solvents of toluene and methanol. The fluorescence profiles changed drastically 

in different solvents. However, no profile changes were observed at different 

concentrations (Figure 1-2-3-5 and 1-2-3-6). These results indicate that the unusual 

spectral profile of the Py unit in Figure 1-2-3-4c reflects the different circumstances, not 

excimer generation, which are always concentration dependent. 
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Figure 1-2-3-4. (a) Image of A, B-block amphiphilic polymers in a micellar system, (b) absorption, 
(c) fluorescence and (d) excitation spectra of the A, B-block amphiphilic polymers containing Py 
and Pe units dissolved in a water/toluene emulsion (118/1) including 1.8% Triton X at 25 °C, 
[polymer]=0.083 g/L, (c) excited at 330 nm, (d) monitored at 460 nm, cell length=1 cm. 
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Figure 1-2-3-5. (a) Absorption and (b) fluorescence spectra of Py-dipyrromethane dissolved in 
mixed solvents (toluene/methanol = 10/0, 8/2, 6/4, 4/6, 2/8, 0/10) at 25 °C. The samples were 
prepared by the absorbance (0.2) at 330 nm, excited at 330 nm, cell length=1 cm.  
  

Figure 1-2-3-6. (a) Absorption and (b) fluorescence spectra of Py-dipyrromethane dissolved in 
methanol at 25 °C. The samples were prepared by the absorbance (0.05), (0.1), (0.2), and (0.3) 
at 330 nm, respectively, excited at 330 nm (b), cell length=1 cm.  
 

0

0.1

0.2

0.3

0.4

0.5

300 350 400 450 500

Abs = 0.3
Abs = 0.2
Abs = 0.1
Abs = 0.05

A
bs

or
ba

nc
e

Wavelength / nm

0

50

100

150

200

250

300

350

350 400 450 500 550 600 650 700

Abs = 0.3
Abs = 0.2
Abs = 0.1
Abs = 0.05

In
te

ns
ity

Wavelngth / nm

N N

(a) (b) 

４１ 
 



1-2-4. Conclusions 
In this section, an A, B-block amphiphilic polymer with energy donors and acceptors, 

each in a different block was prepared by the pseudo-living addition-condensation 

polymerization. We confirmed that the A, B-block amphiphilic polymer existed on the 

heterophase boundary and the donor and the acceptor existed in different phases. This 

type of polymer showed an interphase photoinduced energy transfer in a micellar 

system. 
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Section 1-3 
 

Synthesis and Characterization of branched polymers and efficient 
light-harvesting ability 

 

 

1-3-1. Introduction  

 

 Harvesting photon by the antenna molecules and transferring to the reaction center is 

the initial step of natural photosynthesis. Antenna chlorophyll, the primary pigment used 

in photosynthesis, the absorbed energy is rapidly transferred (in 10−9 s) between 

chlorophylls, and then transfer to a molecules in the associated reaction center. The 

construction of artificial light-harvesting complexes has received much attention in 

recent years.1-21 Efficient transfer of the excitation energy is a key aspect for the 

construction of effective light-harvesting systems. In light-harvesting systems, energy is 

absorbed by chromophores and transferred to an acceptor. Porphyrins,6 polymers,9 and 

dendrimers21 which were used to arrange multiple organic chromophores around 

acceptor molecules have been studied. However, the synthesis of these systems is very 

difficult.          

In Section 1-1 and 1-2, structure-controlled polymers can be prepared by pseudo-living 

polymerization, which requires no specific conditions, and the polymer structure is 

easily controlled by continuous addition of aldehydes has been studied. In this section, a 

branched polymer with high and low amounts of energy donors and acceptors was 

prepared by the pseudo-living addition-condensation polymerization. The polymer 

features a high amount of energy donors in branched parts and a low amount of energy 

acceptors in centers, it showed an efficient light-harvesting ability. 
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1-3-2. Experimental 
 

1-3-2-1. Materials 

1-Methylpyrrole (MePyr), benzaldehyde-2-sulfonic acid sodium salt (BS), 

1-Methyl-2-pyrrolecarboxaldehyde (MePyrA) and 3-perylenecarboxaldehyde (PeA) 

were purchased from Tokyo Kasei Chemical Co., Ltd. 1-Pyrenecarboxaldehyde (PyA), 

p-toluenesulfonic acid monohydrate (p-TS), and other reagents and solvents were 

purchased from Wako Pure Chemical Industries, Ltd. Unless stated otherwise, reagents 

and solvents were used without purification. 1-Methylpyrrole (Tokyo Kasei Chemical 

Co., Ltd., Tokyo, Japan) as a monomer was purified by distillation.  

 

1-3-2-2. Measurements 

The UV-Vis spectra were recorded on a V-670 spectrophotometer (JASCO). 

Fluorescence spectra were recorded on a FP-8300 spectrophotometer (JASCO). 
1H-NMR spectra were recorded on a JEOL ECS-400 spectrometer (JEOL) working at 

400MHz using TMS as the internal standard. DMSO-d6 was used as the solvent for the 

polymer. 

 

1-3-2-3. Polymerization 

Branched polymer: 

Figure 1-3-2-1 shows the schedule for preparing the branched polymer by the 

continuous addition of the monomer. 

 

Figure 1-3-2-1. Schedule for the continuous addition polymerization of branched polymers. 
 

PyA (0.750 mmol)
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Py(6)-Pe(1) was prepared as follows:  

Solution-A: MePyr (12.5 mmol), p-TS (0.50 mmol) in DMF (3.6 mL). 

Solution-B: BS (3.63 mmol) in DMF (3.5 mL) 

Solution-C: 1-Methyl-2-pyrrolecarboxaldehyde (MePyrA, 0.50 mmol) in DMF (1.5 

mL) 

Solution-D: PyA (0.75 mmol) in DMF (3.0 mL) 

 

3-Perylenecarboxaldehyde (PeA, 0.125 mmol) was added to Solution-A with stirring 

(300 rpm) at 10 °C for 2 h. Solution-B was continuously added to the reaction mixture 

for 42 h. At 6 h, Solution-C was continuously added for 2 h. Then, at 42 h, Solution-D 

was continuously added for 2 h. The reaction was stopped by the addition of a sodium 

carbonate aqueous solution (5%, 1.2 mL) at 48 h. Isopropyl alcohol (80 mL) was added 

to the reaction mixture. The resulting precipitate was purified by reprecipitations from 

two times of DMF/isopropyl alcohol (8 mL/80 mL) and two times of water/isopropyl 

alcohol (6 mL/80 mL), and then dissolved in water. The polymer was obtained by 

freeze-drying (0.944 g, yield: 70.4%). Other polymers were similarly prepared. 

 
1H NMR spectra of branched polymers:  

Figure 1-3-2-2 shows the chemical structures and the NMR spectra of branched 

polymers. The peaks from 7.5 to 8.5 ppm assigned to Py and Pe protons (f and g). From 

Py(0)-Pe(1) to Py(6)-Pe(1), these signals become stronger as the Py content increases. 
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Structure-uncontrolled branched polymer Py(6)-Pe(1) was prepared as follows: 

MePyr (5.0 mmol), BS (3.63 mmol), PeA (0.125 mmol), PyA (0.75 mmol), and 

MePyrA (0.50 mmol) were dissolved in DMF (7.0 mL). A second solution containing 

p-TS (0.50 mmol, 1 mL DMF) was added to this solution at 10 °C. The reaction was 

stopped with sodium carbonate aqueous solution (5%, 1.2 mL) after 24 h. Isopropyl 

alcohol (80mL) was added to the reaction mixture. The resulting precipitate was 

purified by reprecipitation twice from DMF/isopropyl alcohol (8 mL/80 mL) and twice 

from water/isopropyl alcohol (6 mL/80 mL), and then dissolved in water. The polymer 

was obtained by freeze-drying (1.061 g, 75%). Other polymers were similarly prepared. 

 

 

1-3-3. Results and discussion 
 
1-3-3-1. Branched polymer for light-harvesting 

The structures of the aldehydes and 1-methyl-2-pyrrolecarboxaldehyde (MePyrA), 

which is used as a branching unit, are shown in Figure 1-3-3-1a. The image of 

preparation and the schedule of addition are shown in Figure 1-3-3-1b and Figure 

1-3-2-1, respectively. The sequential addition into an excess of MePyr was conducted in 

the following order: Step (1), [PeA (at one time addition)]; Step (2), [BS]; Step (3), [BS 

and MePyrA]; Step (4), [BS]; and Step (5), [BS and PyA]. The details are discussed in 

the 1-3-2-3. 

Light harvesting is the initial step of natural photosynthesis.22-23 Figures 1-3-3-2, 

1-3-3-3a, and 1-3-3-3b show the absorption, fluorescence, and excitation spectra of the 

prepared polymers, respectively. The abbreviation Py(6)-Pe(1) indicates that the molar 

ratio of the Py unit to the Pe unit is 6:1. The structural image of Py(6)-Pe(1) is shown in 

Figure 2c. The absorbance around 330 nm increased with respect to the relative amount 

of the Py unit (shown in Figure 1-3-3-2). The fluorescence intensity around 460 nm (the 

emission of the Pe unit) increased almost linearly with respect to the relative amount of 

the Py unit (shown in Figure 1-3-3-3a). This indicates that the photoinduced energy 

transfer occurs from the multi donors to one acceptor. In the excitation spectra 

monitored at 455 nm, the intensity around 330 nm increases with respect to the relative 
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Figure 1-3-3-1. Preparation of structure-controlled polymers by pseudo-living 
addition-condensation polymerization by the continuous addition of monomers. 
 

amount of the Py unit. This indicates an efficient light-harvesting mechanism. 
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Figure 1-3-3-2. Absorption spectra of branched polymers containing high and low 
amounts of Py and Pe units dissolved in water at 25 °C, abs (420 nm)=0.1, except 
Py(6)-Pe(0), cell length=1 cm.  
 

Figure 1-3-3-3. (a) Fluorescence and (b) excitation spectra of branched polymers containing 
high and low amounts of Py and Pe units dissolved in water at 25 °C, abs(420 nm)=0.01, except 
Py(6)-Pe(0), (a) excited at 320 nm, (b) monitored at 455 nm, cell length= 1 cm.  
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Figure 1-3-3-4. (a) Fluorescence and (b) excitation spectra of controlled (blue line) and 
uncontrolled (red line) branched polymers dissolved in water at 25 °C, abs(320 
nm)=0.1, (a) excited at 320 nm, (b) monitored at 455 nm, cell length= 1 cm.  
 

1-3-3-2. Energy transfer in structure-uncontrolled branched polymers  

 In order to clarify the advantage of structure-controlled branched polymers, we 

compared energy transfer in structure-controlled branched polymers with that in 

uncontrolled branched polymers. 

 Figures 1-3-3-5, 1-3-3-4(a), and 1-3-3-4(b) show the absorption, fluorescence, and 

excitation spectra of the prepared polymers, respectively. In the fluorescence spectra 

(λexc = 320 nm) where the Py unit was dominantly excited, the fluorescence intensity of 

Py(6)-Pe(1) (controlled and uncontrolled), which emitted around 455 nm, was larger 

than that of Py(0)-Pe(1) (controlled and uncontrolled). In the excitation spectra, which 

were monitored at 455 nm and dominated by the Pe unit, the intensity of Py(6)-Pe(1) 

(controlled and uncontrolled) around 330 nm was larger than Py(0)-Pe(1) (controlled 

and uncontrolled). These results suggest that photoinduced energy transfer occurred 

from the excited Py unit to the Pe unit both in the controlled and uncontrolled branched 

polymers. However, energy transfer in controlled branched polymer is more efficient 

than that in uncontrolled branched polymer. 
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Figure 1-3-3-5. Absorption spectra of controlled (blue line) and uncontrolled (red line) 
branched polymers dissolved in water at 25 °C, abs (320 nm)=0.1, cell length=1 cm.  
  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
1-3-4. Conclusions 
 

In conclusions, a branched polymer with high and low amounts of energy donors and 

acceptors was prepared by the pseudo-living addition-condensation polymerization. The 

polymer features a high amount of energy donors in branched parts and a low amount of 

energy acceptors in centers, it showed an efficient light-harvesting ability. 
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Section 1-4 
 

Light-Harvesting and Electron Transfer in a branched Polymer for 
Artificial Photosynthetic Antenna-Reaction Centers 

 

 

1-4-1. Introduction 
 Photosynthetic reaction centers are well known to convert light energy into 

electrochemical energy via photoinduced electron transfer. The conversion of light 

energy into electrochemical energy during photosynthesis involves two steps: (i) Light 

harvesting, which involves the absorption of sunlight to excite electrons in peripheral 

antennae of the photosynthetic systems and subsequent rapid excitation energy transfer 

to reaction centers; and (ii) photoinduced electron transfer, which generates 

charge-separated states using this excitation energy.1-2 Accordingly, it is possible to 

design and synthesize artificial photosynthetic reaction centers that efficiently convert 

light energy into electrochemical energy in the form of charge separation.3-5 In order to 

construct an artificial photosynthetic system, a variety of antenna mimics, based on 

porphyrins,6-7 polymers,8 and dendrimers,9-10 have been studied. Furthermore, we 

recently reported a new type of pseudo-living polymerization that leads to the easy 

preparation of structure-controlled polymers. Photoinduced energy transfer, especially 

light harvesting, has been studied in these structure-controlled polymers, in which 

energy donors in branched parts absorb light and transfer the resulting excitation energy 

to energy acceptors in reaction centers via singlet-singlet energy transfer. The initial 

steps toward designing artificial reaction centers based on efficient light-harvesting have 

been studied11 in Section1-3. 
 In order to generate charge-separated states using light energy in artificial reaction 

centers, porphyrin-fullerene systems have been studied.12-17 However, the synthesis of 

porphyrin-fullerene systems is very difficult. In contrast, structure-controlled polymers 

can be prepared by pseudo-living polymerization, which requires no specific conditions. 

The polymer structure is easily controlled by continuous addition of aldehydes.11 In 

addition, energy transfer in structure-controlled branched polymer is more efficient than 
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that in uncontrolled branched polymer (Section 1-3). Here, we present the preparation of 

structure-controlled polymer as part of our continuing study of artificial photosynthesis. 

We attempted to prepare a branched polymer containing anthraquinone (AQ), an 

electron acceptor, via a pseudo-living addition-condensation polymerization. In 

photosynthetic reaction centers, excited chlorophyll, resulting from sunlight absorption, 

donates an electron to nearby chlorophyll, beginning an electron transfer cascade that 

moves electrons through a series of acceptors to a quinone. In this Section, we report the 

synthesis and spectroscopic characterization of a branched polymer featuring a high 

amount of energy donors (pyrene, Py) in the branched parts, and a low amount of 

energy acceptors (perylene, Pe) in the centers that also bear a Pe-AQ electron 

donor-acceptor unit. The polymer combines efficient light harvesting (singlet-singlet 

energy transfer) with photoinduced electron transfer. 

 

 

1-4-2. Experimental 
 

1-4-2-1. Materials 

1-Methylpyrrole (MePyr), benzaldehyde-2-sulfonic acid sodium salt (BS), 

1-Methyl-2-pyrrolecarboxaldehyde (MePyrA) and 3-perylenecarboxaldehyde (PeA) 

were purchased from Tokyo Kasei Chemical Co., Ltd. 1-Pyrenecarboxaldehyde (PyA), 

p-toluenesulfonic acid monohydrate (p-TS), and other reagents and solvents were 

purchased from Wako Pure Chemical Industries, Ltd. Unless stated otherwise, reagents 

and solvents were used without purification. 1-Methylpyrrole (Tokyo Kasei Chemical 

Co., Ltd., Tokyo, Japan) as a monomer was purified by distillation.  

 

1-4-2-2. Measurements 

The UV-Vis spectra were recorded on a V-670 spectrophotometer (JASCO). 

Fluorescence spectra were recorded on a FP-8300 spectrophotometer (JASCO). 
1H-NMR spectra were recorded on a JEOL ECS-400 spectrometer (JEOL) working at 

400MHz using TMS as the internal standard. DMSO-d6 was used as the solvent for the 

polymer. 
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Figure 1-4-2-1. Schedule for the continuous addition polymerization of branched polymers. 
 

1-4-2-3. Monomer synthesis 

2-Anthraquinonecarboxaldehyde (AQA)18:  

To a suspension of 2-(hydroxymethyl)anthraquinone (2.0 g, 8 mmol) in CH2Cl2 (100 

mL) was added pyridinium chlorochromate (PCC; 2.6 g, 12 mmol). The mixture was 

stirred at room temperature for 12 h. Excess PCC was then removed by filtration. The 

solvent was evaporated under reduced pressure and the residue was washed with water 

(75 mL) and extracted with CH2Cl2 (3 × 75 mL). The organic layer was dried over 

magnesium sulfate and the solvent was removed under reduced pressure. The resulting 

solid was purified by silica gel chromatography using hexane:CH2Cl2 (1:5) as the eluent 

(yield: 1.180 g, 68 %); 1H-NMR (CDCl3, 400 MHz) δ 10.30 (1H, s), 8.86 (1H, d, J = 1.6 

Hz), 8.57 (1H, d, J = 8 Hz), 8.45–8.40 (2H, m), 8.37 (1H, dd, J1 = 8 Hz, J2 = 1.6 Hz), 

7.92 (2H, m). 

 

 

1-4-2-4. Polymerization 

Branched polymer: 

Figure 1-4-2-1 shows the schedule for preparing the branched polymer by continuous 

addition of the monomer. 

 

  

 

Py(6)-Pe(1)-AQ(2) was prepared as follows: 

Solution A: 1-Methylpyrrole (MePyr, 12.5 mmol) and p-toluenesulfonic acid 

monohydrate (p-TS, 0.50 mmol) in DMF (3.6 mL). 

Solution B: 2-Anthraquinonecarboxaldehyde (AQA, 0.25 mmol) in DMF (2.0 mL). 

PyA (0.750 mmol)
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Solution C: Benzaldehyde-2-sulfonic acid sodium salt (BS, 3.63 mmol) in DMF (3.5 

mL). 

Solution D: 1-Methyl-2-pyrrolecarboxaldehyde (MePyrA, 0.50 mmol) in DMF (1.5 

mL). 

Solution E: 1-Pyrenecarboxaldehyde (PyA, 0.75 mmol) in DMF (3.0 mL). 

3-Perylenecarboxaldehyde (PeA, 0.125 mmol) was added to Solution A with stirring 

(300 rpm) at 10 °C for 2 h. At 2 h, Solution B was added continuously for 4 h. Then, 

Solution C was added continuously for 42 h. At 8 h, Solution D was added continuously 

for 2 h. Then, at 42 h, Solution E was added continuously for 2 h. The reaction was 

quenched with sodium carbonate aqueous solution (5%, 1.2 mL) after 48 h. Isopropyl 

alcohol (80 mL) was added to the reaction mixture. The resulting precipitate was 

purified by reprecipitation twice from DMF/isopropyl alcohol (8 mL/80 mL) and twice 

from water/isopropyl alcohol (6 mL/80 mL), and then dissolved in water. The polymer 

was obtained by freeze-drying (yield: 0.933 g, 69.6 %). Other polymers were similarly 

prepared. 
 

1H-NMR spectrum of branched polymer. Figure 1-4-2-2 shows the chemical 

structures and an example NMR spectrum for the branched polymers. Peaks from 7.5 to 

8.5 ppm were assigned to Py, Pe, and AQ protons (g, f, and h). However, the contents of 

Py, Pe and AQ units in the polymer could not be determined because of spectral 

broadening and overlapping peaks. 

 

Reduction of anthraquinone that in the branched polymer 

An aqueous solution (abs(420 nm) = 0.1) of Py(6)-Pe(1)-AQ(2) (1.0 g) was prepared by 

diluting with water (9.0 g) at 25 °C. Sodium borohydride (NaBH4, 0.010 g) was added 

to the resulting solution (3.0 g). After 2 h, spectroscopic measurement of the solution 

containing NaBH4 was carried out. Solutions of other polymers were similarly prepared 

under the same measurement conditions. 
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Figure 1-4-2-2. 1H-NMR spectra of a branched polymer in DMSO-d6.  
 

 

 

 

 
1-4-3. Results and discussion 
 

1-4-3-1. Light-Harvesting and Electron Transfer in a branched Polymer 

Branched polymers were prepared by the pseudo-living addition-condensation 

polymerization of 1-methylpyrrole (MePyr) and an aldehyde. The structures of the 

aldehydes and 1-methyl-2-pyrrolecarboxaldehyde (MePyrA), which was used as a 

branching unit, are shown in Figure 1-4-3-1a. The preparation and schedule of addition 

are shown in Figures 1-4-3-1b and 1-4-2-1, respectively. Sequential addition into excess 

MePyr was conducted in the following order: Step (1), one-time addition of 

3-perylenecarboxaldehyde (PeA); Step (2), 2-anthraquinonecarboxaldehyde (AQA); 

Step (3), benzaldehyde-2-sulfonic acid sodium salt (BS); Step (4), BS and MePyrA; 
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Figure 1-4-3-1. Preparation of structure-controlled branched polymers for light 
harvesting, energy transfer, and electron transfer model by pseudo-living 
addition-condensation polymerization with the continuous addition of monomers. 
 

Step (5), BS; and Step (6), BS and 1-pyrenecarboxaldehyde (PyA). Three reference 

polymers were prepared for this purpose: Py(6)-Pe(1)-AQ(2), Py(6)-Pe(1)-AQ(0), and 

Py(0)-Pe(1)-AQ(0). This notation indicates the molar ratio of the Py, Pe, and AQ units; 

e.g., the ratio in Py(6)-Pe(1)-AQ(2) is 6:1:2. The structure of Py(6)-Pe(1)-AQ(2) is 

depicted in Figure 1-4-3-1c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1-4-3-3a, 1-4-3-2a, and 1-4-3-2b show the absorption, fluorescence, and 

excitation spectra of the prepared polymers, respectively. In the absorption spectra, Py 

unit bands appeared around 330 nm, while Pe unit bands appeared around 420 nm. In 
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Figure 1-4-3-2. (a) Fluorescence and (b) excitation spectra of branched polymers dissolved in 
water at 25 °C; abs(420 nm) = 0.01, (a) excited at 320 nm, (b) monitored at 455 nm, cell length = 1 
cm. 
 

the fluorescence spectra (λexc = 320 nm), which were dominated by the Py unit, the 

fluorescence intensity of Py(6)-Pe(1)-AQ(0), which emitted around 455 nm, was larger 

than that of Py(0)-Pe(1)-AQ(0). In the excitation spectra, which were monitored at 455 

nm and dominated by the Pe unit, the intensity of Py(6)-Pe(1)-AQ(0) around 330 nm 

was larger than those of the other polymers. This indicates that photoinduced energy 

transfer occurred from multiple donors to one acceptor and that an efficient 

light-harvesting system had been prepared (Figure 1-4-3-6(a)). In contrast, the 

fluorescence intensity (λexc = 320 nm) of Pe in polymer Py(6)-Pe(1)-AQ(2) was 

quenched in comparison with polymer Py(6)-Pe(1)-AQ(0), which lacked the AQ 

acceptor. In the fluorescence spectra (λexc = 420 nm, Figure 1-4-3-3b), which were 

dominated by the Pe unit, the fluorescence intensity of Pe in Py(6)-Pe(1)-AQ(2) was 

also quenched. This result suggests that electron transfer from the electron donor (Pe) to 

the electron acceptor (AQ) had occurred. These fluorescence (λexc = 320 and 420 nm) 

and excitation spectra results suggested that photoinduced energy transfer occurred from 

the excited Py unit to the Pe unit, and that electron transfer occurred from the Pe unit to 

the AQ unit. Although, there is a possibility that electron transfer occurred from a part 

of the excited Py units to the AQ units (Figure 1-4-3-6(b)). 
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Figure 1-4-3-3. (a) Absorption and (b) fluorescence spectra of branched polymers dissolved 
in water at 25 °C; abs (420 nm) = 0.01, (b) excited at 420 nm, cell length = 1 cm.  
  

   

 

 

Moreover, to prove electron transfer from Pe to AQ, the AQ units in the polymers were 

reduced with sodium borohydride (NaBH4; further details are given in the 1-4-2-4). 

Figures 1-4-3-4(a) and 1-4-3-4(b) show the fluorescence and excitation spectra of the 

prepared polymers treated with NaBH4. In the fluorescence spectra (λexc = 320 nm), 

which were dominated by the Py unit, the fluorescence intensity of reduced 

Py(6)-Pe(1)-AQ(2), which emits around 455 nm, was similar to that of 

Py(6)-Pe(1)-AQ(0) and Py(0)-Pe(1)-AQ(0). In the excitation spectra monitored at 455 

nm, the intensity of reduced Py(6)-Pe(1)-AQ(2), at around 330 nm, was increased to 

that of Py(6)-Pe(1)-AQ(0). After reduction, Py(6)-Pe(1)-AQ(2) was an efficient 

light-harvesting system, as seen for Py(6)-Pe(1)-AQ(0). In the fluorescence spectra (λexc 

= 420 nm, shown in Figure 1-4-3-5(b), which were dominated by the Pe unit, the 

fluorescence intensity of reduced Py(6)-Pe(1)-AQ(2) was similar to those of 

Py(6)-Pe(1)-AQ(0) and Py(0)-Pe(1)-AQ(0). Therefore, reduction of the AQ unit caused 

electron transfer in Py(6)-Pe(1)-AQ(2) to disappear. This also suggested that 

photoinduced energy transfer occurred from excited Py units to Pe units, and that 

electron transfer occurred from Pe units to AQ units. 
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Figure 1-4-3-5. (a) Absorption and (b) fluorescence spectra of branched polymers with NaBH4 
dissolved in water at 25 °C; abs(420 nm) = 0.01, excited at 420 nm, cell length = 1 cm.  
 
 

Figure 1-4-3-4. (a) Fluorescence and (b) excitation spectra of branched polymers treated 
with NaBH4 dissolved in water at 25 °C; abs(420 nm) = 0.01. (a) excited at 320 nm, (b) 
monitored at 455 nm, cell length = 1 cm. 
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Figure 1-4-3-6. Energy and electron transfer mechanisms described in this paper: (a) energy transfer 
occurs from the excited Py to Pe; (b) energy transfer occurs from the excited Py to Pe, and electron 
transfer occurs from Pe to AQ. 
 

 

 

 

 

 

 

1-4-4. Conclusions 
 

In conclusions, we prepared a branched polymer, which integrates singlet-singlet 

energy transfer and photoinduced electron transfer, by pseudo-living 

addition-condensation polymerization. The polymer, which features a high amount of 

energy donors (Py) in branched parts and a low amount of energy acceptors (Pe) in the 

centers, also bears Pe–AQ electron donor-acceptor units similar to those seen in natural 

photosynthetic antenna-reaction center complexes. 
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CHAPTER 2 
 

Syntheses of polymers prepared from 
trihydroxybenzene with aldehyde and their application 

to artificial photosynthesis 
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Section 2-1 
 

Syntheses of step-π-conjugated polymer from trihydroxybenzene 
with aldehyde and study on photoinduced electron transfer 

 

 

2-1-1. Introduction  

 The conversion of light energy into electrochemical energy during photosynthesis 

involves two steps: (i) Light harvesting, which involves the absorption of sunlight to 

excite electrons in peripheral antennae of the photosynthetic systems and subsequent 

rapid excitation energy transfer to reaction centers; and (ii) photoinduced electron 

transfer, which generates charge-separated states using this excitation energy.1-2 The 

design and development of light-harvesting, and electron transfer will make it possible 

to realize an efficient artificial photosynthetic system.3-5 The light-harvesting have been 

studied in chapter 1.6-7 In photosynthetic reaction center proteins, transfer electron over 

long distances using stepwise electron hopping reactions between redox cofactors. 8-12 

Synthetic electron donor-acceptor systems have been prepared to study the 

dependencies of electron transfer rate constants on donor-acceptor distance.13-15 For 

electron transfer from A1 to A2 efficiently (Figure 2-1-1-1), it is necessary to slow down 

the Kb1. For slowing down the Kb1 , the electron transfer distance between D1 and A1 

needs to be long. In order to change the distance between D1 and A1, molecular wire can 

be used. A molecular wire is often described as a molecular bridge that is able to move 

charge efficiently over many chemical bond lengths. Accordingly, D-B-A systems allow 

us to study the structural and electronic requirements for transitioning between 

superexchange and charge hopping.13-22  

 In this section, we defined a step-π-conjugated polymer which alternately consists of a 

small π-conjugated molecule as like as a benzene unit and a sp3-methine carbon. The 

benzene units have no coplanar each other. Therefore, no strong interaction exists 

between benzene units; however, superexchange or hopping of electrons occurs. The 

step-π-conjugated polymer can work as a molecular wire with high efficiency electron 

transfer (Figure 2-1-1-2). 
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Figure 2-1-1-2. Concept of THB type molecular wire. 
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2-1-2. Experimental 
 

2-1-2-1. Materials 

Benzaldehyde-2-sulfonic acid sodium salt (BS), and 3-perylenecarboxaldehyde (PeA) 

were purchased from Tokyo Kasei Chemical Co., Ltd. Pyrogallol (1, 2, 3- 

trihydroxybenzene (1, 2, 3THB)), phloroglucinol (1, 3, 5- trihydroxybenzene (1, 3, 

5THB)), p-toluenesulfonic acid monohydrate (p-TS), and other reagents and solvents 

were purchased from Wako Pure Chemical Industries, Ltd. Unless stated otherwise, 

reagents and solvents were used without purification.  

 

2-1-2-2. Measurements 

The UV-Vis spectra were recorded on a V-670 spectrophotometer (JASCO). 

Fluorescence spectra were recorded on a FP-8300 spectrophotometer (JASCO). 
1H-NMR spectra were recorded on a JEOL ECS-400 spectrometer (JEOL) working at 

400MHz using TMS as the internal standard. DMSO-d6 was used as the solvent for the 

polymer. 

 

2-1-2-3. Polymerization 

The polymerization of THB (non) polymer: 

Synthesis of THB (non) polymer is shown in Scheme 2-1-2-1. 

1, 2, 3 THB (10.0 mmol) and BS (12.0 mmol) were dissolved in water (5.0 mL). A 

second solution containing p-TS (1.0 mmol, 1 mL water) was added to this solution at 

25 °C. After 24 h, isopropyl alcohol (120 mL) was added to the reaction mixture. The 

resulting precipitate was purified by reprecipitations from three times of water/isopropyl 

alcohol (12 mL/120 mL), and then dissolved in water. The polymer was obtained by 

freeze-drying (0.611 g, 75%). 

 

The polymerization of THB polymer containing electron donor (Pe) or electron 

acceptor (AQ): 

Syntheses of THB (Pe/ AQ) polymers are shown in Scheme 2-1-2-1. 

THB (Pe) was prepared as follows: 
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Solution-A: 1, 3, 5 THB (0.60 mmol), PeA (0.30 mmol) in THF (7.5 ml) 

Solution-B: p-TS (1.0 mmol) in THF (0.5 ml) 

Solution-C: 1, 2, 3 THB (4.70 mmol), BS (6.0 mmol) in water (8.5 ml) 

 

Solution-B was added to Solution-A at 25 °C. After 12 h, Solution-C was added to the 

reaction mixture. Then after 24 h, THF in mixture solution was distillation by 

evaporation. The resulting solution was kept at 25 °C for 72 h. THF (80 mL) was added 

to the reaction mixture. The resulting precipitate was purified by reprecipitations from 

two times of water/THF (8.0 mL/80 mL) and two times of water/isopropyl alcohol (6.0 

mL/240 mL), and then dissolved in water. The polymer was obtained by freeze-drying 

(0.286 g, 70%). THB (AQ) polymer was similarly prepared.  

 

 

The polymerization of THB polymer containing electron donor (Pe) and electron 

acceptor (AQ): 

Synthesis of THB (Pe-AQ) polymer is shown in Scheme 2-1-2-2. 

THB (Pe) (0.2 g), THB (AQ) (0.6 g), and BS (0.1 g) were dissolved in water (3.0 mL). 

A second solution containing p-TS (0.50 mmol, 1 mL water) was added to this solution 

at 25 °C. After 72 h, isopropyl alcohol (120 mL) was added to the reaction mixture. The 

resulting precipitate was purified by reprecipitations from two times of water/isopropyl 

alcohol (12 mL/120 mL), and then dissolved in water. The polymer was obtained by 

freeze-drying (0.745 g, 80%). THB (Pe-non) polymer was similarly prepared. 
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Scheme 2-1-2-1. THB polymers containing Pe and AQ units prepared by continuous 
addition of aldehydes. 
 

Scheme 2-1-2-2. Synthesis of two component macromolecular wire prepared by 
THB(Pe) polymer, THB(AQ) polymer and aldehyde(BS). 
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2-1-3. Results and discussion 
 

2-1-3-1. Polymerization data 

 The molecular weight was roughly determined by viscosity measurement. The 

Mark-Houwink-Sakurada formula was used to relate the viscosity and molecular 

weight: 

[η]＝KMα, K = 5.73 × 10-5, α = 0.751. 

Here, we used [η]sp/c at 0.40 g/dL instead of [η] because [η]sp/c is almost constant at 

different concentrations. The conversions and molecular weights of the obtained 

polymers are shown in Table 2-1-3-1. Figure 2-1-3-1 showed the absorption spectra of 

THB polymers. Electron donor (Pe) and electron acceptor (AQ) were introduced into 

the THB polymers by the absorption spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-1-3-1. Conversions and molecular weights of THB polymers. 
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Figure 2-1-3-1. Absorption spectra of THB polymers containing Pe and AQ units 
dissolved in water with 5 % triton X, cell length = 1 cm. 
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2-1-3-2. The chemical stability for oxidation of MePyr type polymer and benzene 

type polymer 

 MePyr type polymer is easy to be oxidized,23-24 and partial oxidation of polymers 

leading to the energy trap (Figure 2-1-3-2). On the other hand, the main chain of 

benzene type polymer synthesized by stable benzene ring, it is difficult to be oxidized. 

Oxidation test of MePyr tpye polymer and benzene type polymer was carried out. 

Chloranil was used to the oxidation.  

Figure 2-1-3-3 showed the absorption spectra of MePyr type and THB type polymers 

oxidized by chloranil oxidant. In the absorption spectra of MePyr type polymers, long 

wavelength range bands were observed by oxidation reaction. On the other hand, in the 

absorption spectra of THB type polymers, there is no absorption bands over 700 nm. 

This suggested that THB type polymers were found to be a good oxidation resistance 

than MePyr type polymers. 

 

 

 

 

 

 

 

Figure 2-1-3-2. Partial oxidation of MePyr type polymers leading to the energy trap.  
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2-1-3-3. Electrochemistry, and Energy level diagram 

In order to evaluate the photoinduced electron transfer in THB (Pe-AQ), cyclic 

voltammograms of the monomers were measured (Figure 2-1-3-4 and 2-1-3-5). 

Moreover, the band gaps of monomers were observed by using absorption spectra. The 

potentials of the monomers are summarized in Table 2-1-3-2. 

On the other hand, the highest occupied molecular orbital (HOMO) of the THB 

polymer was estimated from the ionization potential by ultraviolet photoelectron 

spectroscopy in air (surface analyzer, model AC2, Riken Keiki, Co., Ltd., Japan). The 

ionization potential measurement (Figure 2-1-3-6) and band gap measurement spectrum 

(Figure 2-1-3-7) results show the HOMO level of the THB polymer is -5.69 eV, and 

band gap is 5.25eV. Then the energy level diagram shows in Figure 2-1-3-8. The 

LUMO-LUMO energy gap between Perylene and THB polymer is >1eV, this suggested 

that the electron transfer from Pe to AQ maybe proceed by the superexchange 

mechanism.22 
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Figure 2-1-3-3. Absorption spectra of (a) MePyr type and (b) THB type polymers oxidized by 
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With Fc as an internal reference, for which E1/2 (Fc+/Fc) = - 4.8 eV vs. (Ag / Ag+). 
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Figure 2-1-3-4. Cyclic voltammograms of 
Perylene on Pt electode in 0.1 M TBuAPF6 in 
propylene carbonate at a sweep rate 0.05 V/s. 
 

Figure 2-1-3-5. Cyclic voltammograms of 
anthraquinone on Pt electode in 0.1 M 
TBuAPF6 in DMF at a sweep rate 0.05 V/s. 
 

Table 2-1-3-2. Electrochemical Properties of the monomers. 
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Figure 2-1-3-6. Ionization potential of THB 
polymer. 
 

Figure 2-1-3-7. Band gap of THB polymer. 
 

E(Ox) E(Red) E E(ev)
Pe / Pe・+ vs. (Ag / Ag+) 0.63 0.69 0.66 -5.62 HOMO

AQ / AQ・- vs. (Ag / Ag+) -1.24 -1.29 -1.26 -3.70 LUMO
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2-1-3-4. Steady-State Spectroscopy 

 Figures 2-1-3-9a and b show the absorption, and fluorescence spectra of the prepared 

polymers, respectively. In the absorption spectra, AQ unit bands appeared around 350 

nm, while Pe unit bands appeared around 420 nm. In the fluorescence spectra (λexc = 

420 nm), which were dominated by the Pe unit, the fluorescence intensity (λexc = 420 

nm) of Pe in polymer THB (Pe-AQ) was quenched in comparison with polymer THB 

(Pe-non). This result suggested that electron transfer from the electron donor (Pe) to the 

electron acceptor (AQ) occurred via the macromolecular wire. On the other hand, 

comparing from the fluorescence spectra of the mixture of THB (Pe) and THB (AQ) 

and the reference mixture of THB (Pe) and THB (non), no difference of fluorescence 

intensity for Pe is observed. In other words, no electron transfer occurs between the 

polymers (Figure 2-1-3-10). 
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Figure 2-1-3-8. Energy level diagram showing the Pe, THB polymer, and AQ. 
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Figure 2-1-3-9. (a) Absorption and (b) fluorescence spectra of THB polymers dissolved in 
water with 0.1% triton X at 25 °C; abs (420 nm) = 0.01, (b) excited at 420 nm, cell length = 
1 cm.  
  

Figure 2-1-3-10. (a) Absorption and (b) fluorescence spectra of THB polymers dissolved in water 
with 0.1% triton X at 25 °C; abs(420 nm) = 0.01, excited at 420 nm, cell length = 1 cm.  
 
 

Moreover, to prove electron transfer from Pe to AQ, the AQ units in the polymers were 

reduced with sodium borohydride (NaBH4). Figures 2-1-3-11a and b show the 

fluorescence and excitation spectra of the prepared polymers treated with NaBH4. In the 

fluorescence spectra (λexc = 420 nm), the fluorescence intensity of reduced THB 

(Pe-AQ), was similar to that of THB (Pe-non). Because of no electron transfer occurred 

in the reduced THB (Pe-AQ). Therefore, reduction of the AQ unit caused electron 

transfer in THB (Pe-AQ) to disappear. This result also suggests that AQ in the polymer 

works as an electron acceptor. 
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Figure 2-1-3-11. (a) Absorption and (b) fluorescence spectra of THB polymers with NaBH4 dissolved 
in water with 0.1% triton X at 25 °C; abs(420 nm) = 0.01, excited at 420 nm, cell length = 1 cm.  
 
 

 

 

 

 

 

 

 

2-1-3-5. Femtosecond Transient Absorption Spectral Studies 

Figure 2-1-3-12 shows the transient spectra of THB (Pe-AQ) and the mixture of THB 

(Pe) and THB (AQ) in water with 0.1 % triton X at different time using a 388 nm laser 

light with a 150 fs pulse width as excitation source. Comparing from the transient 

spectra of THB (Pe-AQ) and the mixture of THB (Pe) and THB (AQ), the spectra 

profile of the polymers were different. The reason of the spectra difference should be 

the charge-separated state of Pe•+ and AQ•− having been formed in THB (Pe-AQ).  

 In future, we plan to measure the rate constants of energy and electron transfer, and 

explore the detailed mechanism in the polymer. 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

300 350 400 450 500 550 600 650 700

THB(Pe-non) red
THB(Pe-AQ) red

Ab
so

rb
an

ce

Wavelength/nm

0

100

200

300

400

500

600

700

440 480 520 560 600 640 680

THB(Pe-non) red
THB(Pe-AQ) red

In
ten

sit
y

Wavelength/nm

(b)(a)

７９ 
 



Figure 2-1-3-12. Transient Absorption spectra of THB polymers containing Pe and AQ, 
dissolved in water with 0.1% triton X, cell length = 0.5mm, excited at 388nm; 
[polymer]=24g/l, time = -0.8ps, -0.4ps, and 1ps. 
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2-1-4. Conclusions 
 

 In conclusion, comparing from the steady-state fluorescence of the polymer THB 

(Pe-AQ) and the reference polymer THB (Pe-non), the fluorescence of Pe in THB 

(Pe-AQ) is quenched. The transient spectra of THB (Pe-AQ) and the mixture of THB 

(Pe) and THB (AQ), the difference between the polymers has been found. This result 

suggests that the electron transfer occurs from electron-donor (Pe) to electron-acceptor 

(AQ) via the macromolecular wire. 

 The LUMO-LUMO energy gap between Pe and THB polymer is > 1eV, so the electron 

transfer from Pe to AQ maybe proceed by the superexchange mechanism. 
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Section 2-2 
 

Synthesis of A, B-block type polymers having different energy levels 
and study on photoinduced electron transfer 

 

 

2-2-1. Introduction  

 As is well know there are three subjects to realize the artificial photosynthesis 

(learning from the light-dependent reaction of photosynthesis) : (1) Harvesting photon 

by the antenna molecules and transferring to the reaction center ( photoinduced energy 

transfer); (2) Preventing the charge recombination after the  photoinduced electron 

transfer leading to form a long live charge-separated state efficiently; and (3) Using the 

charge-separated state to the multi-redox reaction.1-2 The initial steps toward designing 

artificial reaction centers (subject (1)) based on efficient light-harvesting3-8 have been 

studied in chapter 1. In order to realize the artificial photosynthesis, forming a long live 

charge-separated state (subject (2)) is very important. In order to form a long live 

charge-separated state, it is necessary to prevent the charge recombination. In order to 

form a long live charge-separated state, a multi-stage electron-transfer system based on 

Z scheme mimics has been studied.9-13 In Section 2-1, THB type macromolecular wire 

was used to the long range electron transfer has been studied. In this section, the 

long-range photoinduced electron transfer was considered using THB type 

macromolecular wire with two different energy level blocks. The structure was 

controlled that donor was in high energy level part (A-block), and acceptor was in low 

one (B-block). The macromolecular wire with the different energy levels (A, B-block 

polymer) was suggested an electron transfer with a one-way direction (Figure2-2-1). It 

can form a long live charge-separated state by using this polymer. 
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Figure 2-2-1. Image of electron transfer with two component macromolecular 
wires having different energy levels for effective charge separation. 
 
  

 

 

 

 

 

 

 

2-2-2. Experimental 
 

2-2-2-1. Materials 

Benzaldehyde-2-sulfonic acid sodium salt (BS), 3-perylenecarboxaldehyde (PeA), and 

acetyl chloride were purchased from Tokyo Kasei Chemical Co., Ltd. Pyrogallol (1, 2, 

3THB), phloroglucinol (1, 3, 5THB), p-toluenesulfonic acid monohydrate (p-TS), and 

other reagents and solvents were purchased from Wako Pure Chemical Industries, Ltd. 

Unless stated otherwise, reagents and solvents were used without purification.  
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2-2-2-2. Measurements 

The UV-Vis spectra were recorded on a V-670 spectrophotometer (JASCO). 

Fluorescence spectra were recorded on a FP-8300 spectrophotometer (JASCO). 
1H-NMR spectra were recorded on a JEOL ECS-400 spectrometer (JEOL) working at 

400MHz using TMS as the internal standard. DMSO-d6 was used as the solvent for the 

polymer. 

 

2-1-2-3. Polymerization 

Syntheses of the ester polymers: 

 Syntheses of ester polymers are shown in Scheme 2-2-2-1. 

 THB (Pe-AQ) (0.50 g, prepared in Section 2-1) was dissolved in DMF (5.0 mL).  

Triethylamine (24 mmol) was added to this solution. The resulting solution was stirred 

at 25 °C. Then, a solution containing acetyl chloride (24 mmol, 3.0 mL DMF) was 

continuously added to resulting solution for 30 min. After 6 h, the insoluble substance in 

reaction mixture was separated by filtration. Isopropyl alcohol (80 mL) was added to 

the obtained solution. The resulting precipitate was purified by reprecipitations from 

two times of water/isopropyl alcohol (4 mL/80 mL), and then dissolved in water. The 

polymer was obtained by freeze-drying (0.302 g). The other polymers were similarly 

prepared.  

 
1H NMR spectra of ester polymer and THB polymer: 

 Figure 2-2-2-1 shows the chemical structures and the NMR spectra of ester polymer 

and THB polymer. Although the spectrum broadening is observed in the polymer, it also 

showed the signals of the polymer proton. Comparing from the spectra of ester polymer 

and THB polymer, the peaks (around 7.0 ppm) in ester polymer become weaker as the 

hydroxy content disappeared because of ester reaction. On the other hand, the peaks 

(around 2.0 ppm) in ester polymer become stronger as increasing the methyl content. 
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Scheme 2-2-2-1. Synthsis of ester polymers containing Pe and AQ units. 
 
  
 

Figure 2-2-2-1. 1 H -NMR spectrum of THB polymer and ester polymer in DMSO-d6. 
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Scheme 2-2-2-2. Synthesis of two component macromolecular wire prepared by THB 
polymer, ester polymer and aldehyde(BS). 
 
 

Synthesis of A, B-block type polymers having different energy levels: 

 Syntheses of A, B-block type polymers are shown in Scheme 2-2-2-2. 

 Ester (Pe) (0.2 g), THB (AQ) (0.6 g), and BS (0.1 g) were dissolved in DMF (4.0 mL). 

A second solution containing p-TS (0.50 mmol, 1 mL DMFr) was added to this solution 

at 25 °C. After 24 h, isopropyl alcohol (40 mL) was added to the reaction mixture. The 

resulting precipitate was purified by reprecipitations from two times of water/isopropyl 

alcohol (3 mL/40 mL), and then dissolved in water. The polymer was obtained by 

freeze-drying (0.782 g, 80%). The other polymers were similarly prepared. 

 

 

 

 

 

 

 

 

2-2-3. Results and discussion 
 

2-2-3-1. The properties of the ester polymers 

Energy level diagram: 

 The ionization potential measurement (Figure 2-2-3-1) and band gap measurement 

spectrum (Figure 2-2-3-2) results show the HOMO level of the ester polymer is -5.02 

eV, and band gap of the ester polymer is 5.14eV. While the HOMO level and band gap 

of THB polymer have been studied in Section 2-1. Based on these, energy level diagram 

is formed (Figure 2-2-3-3). 
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Figure 2-2-3-1. Ionization potential of ester polymer. 
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Figure 2-2-3-3. Energy level diagram showing the ester and THB polymers. 
 
 

Image of electron transfer with two component macromolecular wires having 
different energy levels for effective charge separation. 
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Figure 2-2-3-4. (a) Absorption and (b) fluorescence spectra of ester polymers dissolved in 
water with 0.1% triton X at 25 °C; abs (420 nm) = 0.01, (b) excited at 420 nm, cell length = 
1 cm.  
  

(a) (b) 

Steady-State Spectroscopy 

 Figures 2-2-3-4a and b show the absorption, and fluorescence spectra of the prepared 

polymers, respectively. In the absorption spectra, the absorption bands of AQ unit 

appeared around 350 nm, while the absorption bands of Pe unit appeared around 420 

nm. In the fluorescence spectra (λexc = 420 nm), which were dominated by the Pe unit, 

the fluorescence intensity (λexc = 420 nm) of Pe in polymer ester (Pe-AQ) was quenched 

in comparison with polymer ester (Pe-non), which lacked the AQ acceptor. This result 

suggested that electron transfer from the electron donor (Pe) to the electron acceptor 

(AQ) had occurred. Accordingly, ester polymer also can work as a macromolecular 

wire.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-2-3-2. The properties of A, B-block type polymers having different energy levels: 

 Energy levels of polymers have been studied in 2-2-3-1, we know the energy level of 

ester polymer is higher than the energy level of THB polymer. Both of the prepared 

polymers have different energy levels. Ester (Pe)-THB (AQ) means electron donor (Pe) 

in the ester part (high energy level part), and electron acceptor (AQ) in the THB part 

0

0.05

0.1

0.15

0.2

0.25

0.3

300 350 400 450 500 550 600 650 700

ester(Pe-non)
ester(Pe-AQ)

A
bs

Wavelength/nm

0

100

200

300

400

500

600

700

800

440 480 520 560 600 640 680

ester(Pe-non)
ester(Pe-AQ)

In
te

ns
ity

Wavelength/nm

９１ 
 



(low energy level part); e.g., Two sets reference polymers were prepared for this 

purpose: (1) ester (Pe)-THB (AQ)/ ester (Pe)-THB (non); (2) THB (Pe)-ester (AQ) / 

THB (Pe)-ester (non). 

 

 

Steady-State Spectroscopy 

 Figures 2-2-3-5a and b show the absorption, and fluorescence spectra of ester 

(Pe)-THB (AQ) and ester (Pe)-THB (non), respectively. In the absorption spectra, the 

absorption bands of AQ unit appeared around 350 nm, while Pe unit bands appeared 

around 420 nm. In the fluorescence spectra (λexc = 420 nm), which were dominated by 

the Pe unit, the fluorescence intensity (λexc = 420 nm) of Pe in polymer ester (Pe)-THB 

(AQ) was quenched in comparison with polymer ester (Pe)-THB (non), which lacked 

the AQ acceptor. This result suggested that electron transfer from the electron donor 

(Pe) in the ester part (high energy level part) to the electron acceptor (AQ) in the THB 

part (low energy level part) had occurred via the A, B-block type polymers having 

different energy levels.  

 On the other hand, Figures 2-2-3-6a and b show the absorption, and fluorescence 

spectra of ester (AQ)-THB (Pe) and ester (non)-THB (Pe), respectively. In the 

fluorescence spectra (λexc = 420 nm), the fluorescence intensity (λexc = 420 nm) of Pe in 

polymer ester (AQ)-THB (Pe) was similar to that of ester (non)-THB (Pe). In the other 

words, there is no electron transfer in this A, B-block type polymer. Based on the dates 

of Steady-State spectroscopy, the structure of polymer was controlled which donor in 

high energy level part (A-block), and acceptor in low one (B-block), having the 

different energy levels (A, B-block polymer). It was suggested an electron transfer with 

a one-way direction (Figure 2-2-3-7). It can form a long live charge-separated state by 

using this polymer. 
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Figure 2-2-3-5. (a) Absorption and (b) fluorescence spectra of A, B-Block type polymers 
dissolved in water with 0.1% triton X at 25 °C; abs (420 nm) = 0.01, (b) excited at 420 nm, 
cell length = 1 cm.  
  

Figure 2-2-3-6. (a) Absorption and (b) fluorescence spectra of A, B-Block type polymers 
dissolved in water with 0.1% triton X at 25 °C; abs (420 nm) = 0.01, (b) excited at 420 nm, 
cell length = 1 cm.  
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Figure 2-2-3-7. Photoinduced electron transfer mechanisms described in this section.  
  
 
 

 

 

 

 

 

 

 

 

Laser Spectroscopy 

To evaluate an electron transfer with a one-way direction via the A, B-block type 

polymers having different energy levels which electron donor (Pe) in the ester part (high 

energy level part) to the electron acceptor (AQ) in the THB part (low energy level part). 

Fluorescence decay and femtosecond transient absorption measurements were carried 

out. 

  Figure 2-2-3-8 shows the fluorescence decay profile of ester (Pe)-THB (non) and 

ester (Pe)-THB (AQ) in water with 0.1 % triton X at different time intervals using a 388 

nm laser light with a 150 fs pulse width as excitation source. Comparing from the 

fluorescence decay profile of ester (Pe)-THB (non) and ester (Pe)-THB (AQ), the 

difference between the polymers has been found. The decays for ester (Pe)-THB (non) 

was slower than ester (Pe)-THB (AQ). The maximum difference appeared at 2 ps. This 

result suggested that electron transfer from Pe to AQ via macromolecular wire occurred 

at 2 ps. On the other hand, the fluorescence decay profile of ester (AQ)-THB (Pe) was 

similar to that of ester (non)-THB (Pe). In the other words, there is no electron transfer 
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Figure 2-2-3-8. Fluorescence decay profile of A,B-block polymers containing Pe or Pe and 
AQ units, dissolved in water with 0.1 % triton X, excitation at 388nm; [polymer]=24g/l. 
  
  

in this A, B-block type polymer. 

In addition, the transient spectra at 2 ps of ester (Pe)-THB (AQ) and the mixture of 

THB (Pe) and THB (AQ) were shown in Figure 2-2-3-9. The difference between the 

polymers has been found. The reason of the difference should be the charge-separated 

state of Pe•+ and AQ•− having been formed in ester (Pe)-THB (AQ). On the other hands, 

there is no change in the transient spectra at 2 ps of ester (AQ)-THB (Pe) and the 

mixture of THB (Pe) and THB (AQ) (Figure 2-2-3-10).  

Based on the dates of laser spectroscopy, these suggested an electron transfer with a 

one-way direction occurred from electron donor (Pe) in the ester part (high energy level 

part) to electron acceptor (AQ) in the THB part (low energy level part) via the A, 

B-block type polymer. It can form a long live charge-separated state by using this 

polymer. 

 

In future, we plan to measure the rate constants of energy and electron transfer, and 

explore the detailed mechanism in the polymer. 
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Figure 2-2-3-9. Transient Absorption spectra of THB polymers containing Pe and AQ, 
dissolved in water with 0.1% triton X, cell length=0.5mm, excited at 
388nm ;[polymer]=24g/l, time=2ps. 
 

Figure 2-2-3-10. Transient Absorption spectra of THB polymers containing Pe and AQ, 
dissolved in water with 0.1% triton X, cell length=0.5mm, excited at 
388nm ;[polymer]=24g/l, time=2ps. 
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2-2-4. Conclusions 
 

In this section, the long-range photoinduced electron transfer was considered using 

step-π-conjugated polymers with two different energy level blocks. The structure was 

controlled that donor was in high energy level part (A-block), and acceptor was in low 

one (B-block). The macromolecular wire with the different energy levels (A, B-block 

polymer) was suggested an electron transfer with a one-way direction. It can form a 

long live charge-separated state by using this polymer. 
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In this study, syntheses of structure-controlled polymers and application to artificial 

photosynthesis are discussed. Each section is summarized below. 

 

 

In CHAPTER 1, MePyr type structure-controlled polymers were prepared by 

pseudo-living addition-condensation polymerization and their application to study on 

subject for artificial photosynthesis are described. 

 

Section 1-1 

 A new type of pseudo-living polymerization by continuous addition of monomers to 

the addition-condensation of 1-methylpyrrole and aldehydes is shown. The 

pseudo-living addition-condensation polymerization is able to control the polymer main 

structures. The conversions and molecular weights of the obtained polymers by 

pseudo-living addition-condensation polymerization are shown. The linear relationship 

of the Mw and the added amount of monomers means that this polymerization 

progresses like a living-polymerization.  

 

 

Section 1-2 

Many types of aldehydes can be used in pseudo-living polymerization. The controlled 

addition of certain aldehydes leads to structure-controlled polymers. An A, B-block 

amphiphilic polymer is prepared by the sequential addition of hydrophobic and 

hydrophilic aldehydes. A fluorescence quenching method was used to provide evidence 

that the prepared polymer exists at the heterophase boundary with the donor and 

acceptor groups positioned in the two different phases. This type of polymer showed an 

interphase photoinduced energy transfer in a micellar system. 

 

 

Section 1-3 

 A branched polymer with high and low amounts of energy donors and acceptors was 

prepared by the pseudo-living addition-condensation polymerization. The polymer 
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features a high amount of energy donors (Py) in branched parts and a low amount of 

energy acceptors (Pe) in centers.  According to the fluorescence, and excitation spectra 

of the prepared polymers, the photoinduced energy transfer occurs from the multi 

donors to one acceptor. This indicates an efficient light-harvesting mechanism. 

 

 

Section 1-4 

 Another branched polymer which integrates singlet-singlet energy transfer and 

photoinduced electron transfer was prepared by pseudo-living addition-condensation 

polymerization. The polymer, which features a high amount of energy donors (Py) in 

branched parts and a low amount of energy acceptors (Pe) in the centers, also bears Pe–

AQ electron donor-acceptor units similar to those seen in natural photosynthetic 

antenna-reaction center complexes. 

 

 

 

In CHAPTER 2, syntheses of benzene type polymers and their application to study on 

subject for artificial photosynthesis are described. 

 

Section 2-1 

 We defined a step-π-conjugated polymer which alternately consists of a small 

π-conjugated molecule as like as a benzene unit and a sp3-methine carbon. The benzene 

units have no coplanar each other. Therefore, no strong interaction exists between 

benzene units; however, superexchange and/or hopping of electrons occurs. The 

polymer can work as a molecular wire with high efficiency electron transfer. 

Obtained results are described as follows: 

 

1, Comparing from the steady-state fluorescence and transient spectra of the obtained 

polymers, those results suggest the electron transfer occurs from electron-donor (Pe) to 

electron-acceptor (AQ) via the polymer. 
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2, The electron transfer from Pe to AQ maybe proceed by the superexchange 

mechanism because of the LUMO-LUMO energy gap between Pe and THB polymer is 

> 1eV. 

 

 

Section 2-2 

 The long-range photoinduced electron transfer was considered using 

step-π-conjugated polymers with two different energy level blocks. The structure was 

controlled that donor was in high energy level part (A-block), and acceptor was in low 

one (B-block). The macromolecular wire with the different energy levels (A, B-block 

polymer) was suggested an electron transfer with a one-way direction. It can form a 

long live charge-separated state by using this polymer. 

Obtained results are described as follows: 

 

1, The ionization potential measurement and absorption spectra results show the 

energy level of polymers. The energy level of ester polymer is higher than that of THB 

polymer. Therefore, the A,B- block polymers have different energy levels in a polymer 

chain. 

 

2, According to the steady-state fluorescence, transient spectra, and fluorescence decay 

profile of the obtained polymers, those results suggest an electron transfer with a 

one-way direction via the polymer. 
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