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 Gelatin has been utilized for wide range of human life such as food, food 

supplements, drinks, glues and etc. Gelatin is a peptide mixing which approximate 

higher than 1000 amino acids; produced from collagen by thermal denaturation with 

acid or base pretreatment. From the Grandview research by Gelatin Manufacturers 

Association Asia Pacific (GMAP), show the gelatin market volume share by application 

in year 2013, from production capacity around 350 kilotons, 21% is use in the 

pharmaceutical applications. It’s trend to increase consumption gradually due to 

growing of population and healthcare awareness. Due to gelatin is made from animal 

origin [2-3], it’s biocompatible when takes in living body and low antigenicity [1]. The 

characteristic of heat reversibility is come from the compose between 3D gel network of 

gelatin and microcrystal interconnect with amorphous regions  in coiled segment [4-5]. 

The distinctive property of gelatin is the solution-gelation transition under aqueous 

condition which can change the gelatin to various forms. It’s has been used in many 

form such as nanofibers, microfiber membranes scaffolds granules, sponges etc. [6]. It 

has been reported that gelatin composite membrane have so many biomedical 

applications [7] such as chitin/ gelatin membrane[1], polyvinyl alcohol-gelatin hydrogel 

membrane [8], chitosan/ hydroxyapatite/ gelatin membrane [9] etc. Electrospinning is 

one famous method to produce membrane which have nano size of fiber diameter 

because it’s simple and high efficiency [10]. Nano-fiber in form of membrane is the one 

of gelatin form that used in many applications not only in biomedical applications such 

as tissue engineering or control release but industrial field also. Gelatin micro-fiber by 

dry spinning method is very simple and environmental friendly because used only water 

as a solvent. However only the few amount of research about gelatin micro fiber have 

been found.  Previously, gelatin fibers were prepared by wet spinning method which 

used a lithium (or calcium) chloride–N,N-dimethylacetamide (DMAc) as a solvent [11] . 

In this system, gelatin dissolved in LiCl–DMAc or CaCl2–DMAc at room temperature 

was solidified by exposure to methanol. However, the mechanical property of the 

obtained gelatin fibers was not sufficient for practical applications, and long-term 

immersion in methanol was necessary to remove the salts from the fibers. In addition, 

ethylene glycol had been used as solvent for produced gelatin fiber by gel-spinning [12]. 

But after drawing of the fibers, immersed in methanol to extract the ethylene glycol was 

also necessary. Therefore, the gelatin fibers produced by wet spinning were not suitable 
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for use in biomedical applications.  Gelatin micro-fiber can spun at the high 

concentrated gelatin aqueous solution on heating excluded into the air through nozzle. 

Although the tensile strength of the fiber was much stronger than wet spun fiber but the 

fiber is easy to dissolves in water. So, the cross-linking is necessary to improve the 

water resistant property. Recently, 3D porous scaffold such as sponge have been used 

for treat the diseases because it’s play important role for cell adhesion, cell re-aggregate 

[13] and tissue regeneration etc. Various material have been prepared in form of sponge 

for biomaterial application such as collagen [14], aloe vera [15], hydroxyapatite [16] 

and gelatin [17] etc. Gelatin sponge can produce by freeze-drying (lyophilization), it 

have been studied in field of control release by combine with Tri-calcium phosphate (β-

TCP) [18], protein delivery by combine with hydroxyapatite [19] and scaffolds for 

tissue and cell growth by combine with  hyaluronic [20] etc. In addition, recently gelatin 

sponges are increase usage in oral surgery and hemostatic also. Because gelatin alone in 

each form are not strong enough, in many research always combine, blend with the 

others materials or crosslink with crosslinking agent in order to improve chemical and 

physical property. Glutaraldehyde (GTA) is the organic compound which usually use 

for crosslink with protein because high reactivity and efficiency. Moreover it’s also use 

as crosslinking in the application of sterilize medical, dental equipment, water treatment, 

preservative etc. GTA is inexpensive and when in the solution of liquid  state, it’s very 

high effective for crosslink within short times [21-22]. Cross-linking between GTA and 

protein such as gelatin is relate to NH2 of polypeptide react with CHO of GTA which 

form N=C structure. 

 The preparation of chitin/ gelatin membrane with N-acetyl-D-glucosamine 

(GlcNAc) according to Maillard reaction has been reported. The mechanical property of 

chitin/ gelatin membrane with GlcNAc was higher than those without GlcNAc. Di-

epoxy compounds (Glycol Diglycidyl Ether) have been use for crosslink with collagen 

and gelatin because low toxicity and good biocompatibity [23]. From all of reason, in 

this study we focus to prepare gelatin in many form including of fiber, nano sheet and 

sponge with using several cross-link agents focus on GTA, GlcNAc (reducing sugar) 

and di-epoxy compound in order to improve the water resistant, mechanical and 

chemical properties. For the crosslink method, in case of GTA, the cross-linking should 

be done after each gelatin form was prepared because of the high reactivity while the 
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others crosslinker can be dissolved directly in gelatin aqueous solution before produce 

to the others form. The properties may be different due to the different cross-linking 

method. Expectation results is to expand the usage of gelatin for several fields 

especially biomedical purpose because gelatin is a safe material and preparation method 

is a simple and environmental friendly.  In addition, gelatin with chitosan composite 

will be prepared expect to more excellent mechanical property due to the entanglement 

of polymer chains and antibacterial property. Furthermore, since glycerol act as 

plasticizer, in the combination with gelatin composite, flexible and elastic property also 

expected.  

 In section I, Gelatin micro-fiber have been prepared by dry spinning method. 

The effect of difference crosslinking agent to mechanism property and water resistance 

was described. 

 Chapter 1, gelatin fibers have been prepared by dry spinning using sol-gel 

property which on heating is solution state and it is in gelation state on cooling. In order 

to improve fiber water-resistant and mechanical property, the cross-linking is necessary 

by using reducing sugar, Di-epoxy compounds (denacol) and GTA. The average tensile 

stress of fiber without crosslink is 120 MPa. Each crosslinker which applied to gelatin 

fibers results to improved mechanical property indicated from tensile stress of fibers 

were increased. GlcNAc showed good results in tensile stress and water resistance than 

the others reducing sugar. Di-epoxy was add to gelatin solution before spin 3, 4 and 5% 

of gelatin mass, results shown that stress of fiber were increased follow by increased 

amount of di-epoxy. GTA on the crosslinked gelatin fiber by vapor crosslinked, results 

shown that stress of fiber was increased follow by increased time of crosslinked. And 

when apply heat treatment on the fiber stress of fibers was improved. The comparison 

of each crosslinker by water resistance, GTA and GlcNAc crosslinked showed the good 

water resistance ability and less swelling up to 90 days.   

 Chapter 2, time of vapor crosslinking gelatin with GTA was studied to find the 

optimum point. According to Chapter 1, GTA vapor crosslink is one of crosslinker and 

results shown that stress of fiber was increased follow by increased time of vapor 

crosslinked. So the optimum time of stable stress of fiber was studied.  It was found that 

stress of fiber was gradually increased until reach the stable after 7 days. In addition, 

GTA is recognized as the chemical which may generate health problem by irritating and 



5 
 

corrosive to the skin, eyes and respiratory. In order to avoid unreacted and residual GTA, 

NaBH4 reducing agent was use for neutralize the fiber. After reducing with NaBH4, the 

yellowish of fabric changed from bright to pale yellow which refers to reduction of 

N=C to N-C which may less toxic and more stable to apply in the biomedical 

application.   

 In section II, Gelatin nano-fiber has been prepared by electrospinning method. 

Spinning conditions and effect of difference crosslinking agent was described.  

 Chapter 3, fabrication of gelatin nano fibers by aqueous method. We focus on 

the development of non-woven gelatin fabric by electrospinning. Polymeric fibers 

formed with the simultaneous evaporation of solvent by the action of high voltage to the 

polymer solution, electrospinning in the form of a non-woven fabric can be achieved. 

We have carried out electrospinning providing temperature on the basis of dry spinning. 

Gelatin non-woven fabric has been prepared using GlcNAc and GTA as cross-linker. 

Non-woven fabrics with 25% gelatin concentration showed fiber diameter in the 

nanoscale. In terms of mechanical property, the gelatin non-woven fabric with GTA 

cross-linking showed high mechanical property than the GlcNAc system. The swelling 

and water uptake ability in water and PBS showed that non-woven fabrics with GTA-

cross linking has no little change in morphology. In both the cross-linking methods 

addition of Glycerol could further overpower the toxicity induced due to cross-linkers. 

From the cell studies conducted, it is evident that the developed gelatin fibers showed 

good cytocompatibility and hence would find profound application in various tissue 

engineering. 

 Chapter 4, fabrication of gelatin nano-fibers tubular structure. From 

electrospinning, we successful to prepared gelatin nano-sheet. So we concern on the 

development of non-woven gelatin fabric to tubular structure, expect that may use as 

artificial blood vessels in the future. Basis condition of electrospinning with rotating 

drum collector have been investigated including of spun align fiber. Generally, 

electrospinning is produce the random direction fiber, with using a rotating drum 

collector which has rotation speed higher than 1000 rpm, fibers can be oriented 

circumferentially. In addition, two parallel oppositely charge which set up beside 

rotating drum can produce more aligned fiber. 
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 In section III, Gelatin sponges have been prepared by freeze-drying. Preparation 

and characterization of sponge with difference crosslinking agent have been study. 

Physical, chemical and biological properties were evaluated to use as basic information 

of gelatin sponge and develop in biomaterials such as bone-tissue engineering. In some 

part of research, the results of gelatin sponge have been comparing with Chitin/ Poly 

butylene succinate (PBS) sponge. 

 Chapter 5, gelatin/ chitosan composite were prepared by using GlcNAc and 

GTA as cross-linker into the form of a sponge by freeze dried. The results from SEM 

observation shown that the interconnected porosity of each composite sponge was well 

demonstrated. Sponge showed porosity lower than 50% for GTA, whereas the GlcNAc 

sponges showed higher than 60%. Thermogravimetric also measured and indicated that 

there is no phase change in the composite structures all of sponge. Swelling ratio and 

degradation rate of composite sponge which prepared with GlcNAc system were higher, 

due to higher porosity of the composite sponges. The comparison of gelatin composite 

sponge with chitin/ PBS sponge, chitin/ PBS showed the higher swelling ratio due to 

high porosity which can observe from SEM image. Greatly in amount of porous 

structure is advantage property for a tissue engineering material. 

 Chapter 6, adsorption and desorption was evaluated to use as biomedical 

application. Protein adsorption is very important in the field of biomedical research. The 

prepared sponge was used for studies on adsorption and desorption Fluorescein 

isothiocyanate (FITC) labeling of Bovine Serum Albumin (BSA) as a model instead of 

growth factor. The effect of FITC-BSA concentration and temperature to adsorption 

behavior of gelatin/ chitosan sponge were investigated. Langmuir adsorption isotherm 

model was the assumption that the adsorption behavior occur on a surface by monolayer 

adsorb, and found that fit with the experiment data. The thermodynamic constants of 

adsorption phenomena were found, the adsorptions onto sponge were exothermic 

reactions. Especially Gibbs free energy (G) was negative values in range of 283-343K 

which demonstrate the spontaneous nature of adsorption reaction. In addition, 

desorption behavior also evaluated with different concentration and pH of FITC-BSA 

solution. The high adsorbed amount of FITC-BSA on sponge results to high desorbed 

up to and 55%. And %desorption decrease follow by decrease pH 7.4, 4 and 2 of buffer 

solution respectively.  
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 Chapter 7, gelatin/ chitosan composite sponges with GTA and GlcNAc 

crosslinked were explored the possibility of biomaterial application by in vivo and in 

vivo test. Cell seeding after 24 h cultivation were investigated by using mouse 

osteoblastic MC3T3-E1 cells seed onto the composite sponge, results from SEM 

showed that the cells could well attached to the based sponge and the elongation was 

observed in the GlcNAc system than GTA system. In vivo test, by applied sponge into 

rat subcutaneous model for 10 weeks, from observation by light microscopy indicated 

that extent of ingrowth and biocompatibilities were excellent in GlcNAc system than 

those in GTA system. In addition, loading of FGF2 against to the gelatin based sponge 

cross-linked with GlcNAc system stimulated ingrowth of cells. And excellent bone 

forming ability was also obtained using GlcNAc system sponge loaded with FGF2.  

 In conclusion, the knowledge and achievements obtained by these studies were 

summarized. The contribution and signification of these studies for biomaterial 

application were also described.  
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Chapter 1 

 

Preparation and properties of gelatin micro-fiber with difference cross-

linker 

 

I.1.1 Introduction 

 Gelatin (Gel) has been utilized for wide range of human life such as food, food 

supplements, drinks, glues and etc. due to sol-gel transformation property of aqueous 

solution. Gelatin has also been applied for biomedical materials such as capsule for drug 

delivery system and biomedical membranes. The main reasons is Gel had been accepted 

by human and animal body due to high biocompatibility, low toxicity and 

biodegradability in animal body. The low toxicity of Gel in animal body is mainly 

depended on the non-existent of telopeptides which lead to the immunological response 

of collagen at moderately high level. Recently, people concerning about healthy live and 

well-being, so the using of the biomaterial are increasing popularity. Gel is the one of 

material which able to respond this issue including of medical fiber and medical textile. 

However only the few amount of research about gelatin micro fiber have been found. 

The way to prepare gelatin fiber is slightly difficult due to insolubility against general 

organic solvents and sol-gel transition of gelatin aqueous solution. Previously, gelatin 

fibers were prepared by wet spinning method which used a lithium (or calcium) 

chloride–N,N-dimethylacetamide(DMAc) as a solvent [1]. In this system, gelatin 

dissolved in LiCl–DMAc or CaCl2–DMAc at room temperature was solidified by 

exposure to methanol. However, the mechanical property of the obtained gelatin fibers 

was not sufficient for practical applications, and long-term immersion in methanol was 

necessary to remove the salts from the fibers. Since the high concentrated gelatin 

aqueous solution on heating is sol state and it is in gel state on cooling, concept of 

spinning method was investigated. The gelatin fiber is spun when the high concentrated 

gelatin aqueous solution on heating is excluded into the air through nozzle. The method 

is very simple and environmental friendly because only water is used. Although the 

tensile strength of the fiber was much stronger than that of wet spun fiber but easy to 

dissolves in water. In order to improve the water resistance of fiber, the cross-linking 

agent is necessary to apply to gelatin fiber system. The cross-linked of sugar (non-
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reducing and reducing sugar) with gelatin microspheres and disks has been investigated 

for pharmaceutical application [2]. They found that cross-linking both non-reducing and 

reducing sugars can be reduced water dissolution of Gel. Furthermore, sugar cross-

linking of gelatin molecules has been shown to increase stiffness [3-4] also. According 

to Maillard reaction, reducing sugar and amino group can occur crosslink reaction 

which produces browning compounds which well known in the name of Melanoidine. 

Due to the interaction between carbonyl group of reducing sugar and amino compound 

[5], it’s create structure which high molecular weight and poor characteristic results to 

physical changes in gelatin and other protein matrices [6-9]. Product from this reaction 

have the good properties in antibacterial, antioxidant and antitumor, usually use in the 

food industry such as beer, bread and miso. Epoxy compounds have been investigate as 

crosslinker with soft collagen, reported that possess good biocompatibility and enhance 

biomechanical properties [10-11]. In addition, coated epoxy which crosslinked with 

gelatin onto inner surface of Polyurethane (PU) for vascular grafts application were 

evaluated. The cell adhesion, spreading, and proliferation were significantly improved 

by the smooth epoxy fixed gelatin coating [9]. Glutaraldehyde (GTA) is a bifunctional 

reagent usually used as chemical modifications of proteins and polymers [12] in various 

applications because GTA has commercial availability, low cost and high reactivity. It 

reacts rapidly with amine group around neutral pH [13-14]. Due to all of previous 

research and reason, the objective of this study was the production and characterization 

the gelatin fiber by dry spinning crosslink with various crosslinking agents including of 

sugar, di-epoxy compounds and GTA. The crosslinked gelatin fibers were characterized 

through tensile test and water resistance to compare each effect of crosslinked. Finally, 

such gelatin fibers and fiber assembly is expected to be better use for several fields 

especially in biomaterial application.  

    

I.1.2 Experimental 

I.1.2.1 Materials 

 Gelatin, JS200 (Mw=100,000; 200 bloom; type B) cow skin type in powder was 

from Koei transformation Ltd. Di-epoxy compounds, Ethylene glycol diglycidyl ether 

Denacal EX-810 was from Nagase ChemteX Corporation. The others crosslinker 
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including of Sucrose (Suc), Glucose (Glu), Glucosamine (Gluc), N-Acetylglucosamine 

(GlcNAc) and GTA solution (25%) were from Wako Pure Chemical Industries, Ltd.  

 

I.1.2.2 Preparation of gelatin solutions and spin gelatin fiber 

 The solution of gelatin was prepared by dissolving gelatin powder in water 50% 

by weight. The mixture was covered and put in the electric water bath at temperature 

50±2C for 30 min; stirred every 10 min to obtain homogeneous solution. The 

homogeneous solution of gelatin was filled up in cylinder (50±2C) which connected to 

a nozzle (0.83 mm. inner diameter). Control pressure in the range from 0.10 ± 0.04 MPa. 

was applied on top to the droplet of injected solution. Collection was rotate with speed 

50±10 m/min to an aluminum foil wrapped on a collector. The separating distance 

between the needle tip and the aluminum foil was set to 1.4 m. (Figure 1). The obtained 

fibers were kept on collector at room temperature for 24 h. to remove residual moisture. 

 

 

Figure 1. Dry spinning apparatus. 

  

I.2.2.3 Cross-linking method 

 The treatments of gelatin with each crosslinker were performed as follows. 

Sugar cross-linker 
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 Suc, Glu, Gluc and GlcNAc were investigated to compare the effect of each 

sugar. In the step of prepare gelatin solution, 5% sugar (by gelatin mass) was add to the 

solution. After spun the fibers, applied heat treatment 120C up to 24 h. The aldehyde 

group of reducing sugars can react with the free amino groups of gelatin occur crosslink 

reaction molecule (Figure 2). According to Amadori rearrangement and Millard reaction, 

can rapidly forms complex browning at high temperature. 

 

 

Figure 2. The reaction scheme between gelatin and sugar. 

 

Di-epoxy cross-linker (denacol) 

 Di-epoxy was add to the Gel solution in the preparation Gel solution step by 

vary concentration 3, 4 and 5% by mass of gelatin. In addition, heat treatment at 100C 

24 h also collect the data to study mechanism of the system. The hydroxyl group of 

epoxy can react with the free amino groups of gelatin occur crosslink reaction molecule 

(Figure 3). Due to this reaction, may effect of increasing viscosity of the gelatin solution 

before spin so the time of addition di-epoxy in the solution before spin also record. 

 

Figure 3. The reaction scheme between gelatin and Di-epoxy Ethylene glycol 

diglycidyl ether (Denacol). 
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GTA  

 After spun gelatin fiber (50% by weight in water), the crosslinking process was 

carried out by placing the gelatin fiber in desiccator containing GTA aqueous solution 

and keep at room temperature. After crosslinking, the samples were rinse by immerse in 

methanol for 15 min x 3 times to remove residual GTA. Time of crosslinking in 

desiccator and heat treatment has been evaluated to study mechanism of GTA 

crosslinked system. Figure 4 shown the reaction scheme, the bifunctional compound of 

GTA links covalently to the amine groups of lysine or hydroxylysine in the gelatin 

molecules creating a structure more stable  [12]. 

 

 

Figure 4. The reaction scheme between gelatin and GTA. 

 

 

I.2.2.4 Tensile strength 

 The mechanical property was analyzed using a universal testing machine (STA-

1150, A&D company, Ltd., Japan). Figure 5 shown the test condition of tensile and knot 

strength by apply force. The cross-head loading speed was set at 10 mm/min for 5N 

loading at 25 ± 2C, Humidity = 50 ± 2 % and average the value from 15 times/ sample. 

 

 

 

Figure 5. Tensile (left) and Knot (right) strength test condition. 
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I.1.3 Results and Discussion 

I.1.3.1 Appearance  

 Gelatin fibers was spun by dry spinning and cross-linked using various of 

crosslinking agent type. Figure 6 shown the gelatin solution after keep in electric water 

bath 30 min, solution was homogeneous by bubble was float to the top of solution 

surface. After spun, gelatin with di-epoxy crosslinking obtain the smooth white color 

fiber, but gelatin fiber which vapor crosslinked with GTA, the fibers became visibly 

yellowish because the formation of aldimine linkages between the free amine groups of 

lysine or hydro-lysine amino acid residues of polypeptide chains with the aldehyde 

group of GTA [15-18]. Fibers with sugar, after applied heat treatment showed the 

brown color according to Maillard reaction, which produces browning compounds due 

to the interactions between carbonyl group of sugar and amino compounds of gelatin. 

Fibers have average diameter in range of 50 ± 5 microns in every crosslink condition.  

 

 

 

 

Figure 6. (A) Gel solution before spin, (B) Gel fiber without crosslink, (C) Sugar cross-

linked fiber (GlcNAc), (D) Epoxy cross-linked fiber and (E) GTA cross-linked fiber. 

 

From Figure 7, SEM images of a non-crosslinked, three crosslinked fibers and cross-

section area of a gelatin fiber without crosslinking (Figure 7E and F), furrows attributed 

to the nozzle were observed in the longitudinal direction. The gelatin fiber without 

crosslinking and the denacol-crosslinked fiber exhibited smooth surfaces (Figures 7A 

and C). The GlcNAc-crosslinked fiber showed a slightly heterogeneous surface due to 

the complex Maillard reactions (Figure 7B), and the GTA-treated fiber showed a 

slightly rough surface (Figure 7D). The results indicate that only the surfaces of the 

fibers were crosslinked by GTA vapor, causing it to swelling slightly owing to moisture. 
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The mean diameter of the GTA-treated fibers was 60 ± 5 μm, slightly larger than those 

of the other fibers. An interconnected porous structure was observed in the cross-section 

of the fiber. The fiber exhibited a high porosity with a pore diameter of less than 1 μm. 

 

 

 

Figure 7. SEM images of (A) gel fiber without crosslinking, (B) GlcNAc-crosslinked 

fiber, (C) denacol-crosslinked fiber, (D) GTA-treated fiber, (E) cross section of gelatin 

fiber without crosslinking and (F) high-magnification image of the fiber cross-section. 
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 Moreover, Fourier transform infrared (FT-IR) analysis was studied by using a 

Varian 670-IR spectrometer (Agilent Tech. Int. Japan, Ltd., Tokyo, Japan). Figure 8, 

showed the gelatin peaks of the amide I (C=O stretch), amide II (N–H bend and C–H 

stretch) and amide III (C–N stretch plus N–H in phase bending) were observed at 1636–

1640, 1542–1544 and 1240cm−1, respectively. But the results are no significant 

differences were observed in the spectra of the gelatin fibers with and without 

crosslinking. 

 

 

Figure 8. FT-IR spectra of gelatin fibers: (a) gelatin fibers without crosslinking; (b) 

GlcNAc-crosslinked fibers; (c) denacol-crosslinked fibers; and (d) GTA-treated fibers. 

 

I.1.3.2 Crosslinker effect  

Sugar cross-linker 

 The average tensile stress of gelatin fibers which produced with different sugar 

crosslinked is indicated in Figure 9. Fibers were sampled directly after the spinning at 

let it completely dry at room temperature for 24 h. Tensile strength results indicate that 

stress of fibers, which were cross-linked by either sugars, was improved when 

compared to original and GlcNAc cross-linked fiber showed stress values higher the 

others especially when applied heat treatment condition for 120C 24 h. In addition, the 

effect of heat treatment time results to increased water resistance ability of fiber and 

wavenumber (cm–1) 
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GlcNAc cross-linked shown the highest water resistance more than 90 days when 

applied heat treatment for 24 h. GlcN and Glc were not different in results both tensile 

strength and water resistance. Suc was is weakest crosslinker to Gel fiber in this study 

about sugar cross linker group, because Suc is non-reducing sugar so it’s not form the 

strong interaction like Millard reaction with amino group in gelatin as same as the 

others sugar.    

 

 

Figure 9. Effect of sugar crosslinked to Tensile strength (left) and water resistance 

(right) of gelatin fibers. 

 

Di-epoxy cross-linker (Denacol) 

 Table 1. Shown the results of crosslinking time before spin, after mix the di-

epoxy into gelatin solution viscosity of solution gradually increased follow by time and 

di-epoxy concentration. According to this study, suitable time to crosslinked is between 

30-40 min. At the time before 30 min, the gelatin solution was not homogeneous and 

completely dissolved yet so the fiber was ripped many times during spinning process. 

From Figure 10, both tensile and knot strength results indicate that stress of fibers which 

were cross-linked by di-epoxy was improved when compared to original. The average 

tensile and knot strength of fiber without crosslinker are 120 and 100 MPa respectively. 

Increasing of crosslinked concentration trend to increase stress of fiber. %Strain (the 

elongation) shown tendency to increase gradually when increased amount of di-epoxy 
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compared to original of fiber. The average tensile and knot strain of original fiber are 

less than 10%. After applied heat treatment, % strains of fiber significantly increase 

especially tensile strength condition. In the contrary, stress of fibers remained the same 

or even lower, probably due to thermal decomposition of the gelatin chain [19-20].  

 

Table 1. Effect of crosslink time between di-epoxy and gelatin solution before spin 

Di-epoxy 

(%) 

Crosslink time (min) 

10 20 30 40 50 60 70 

0 X  O O O O O 

3 X  O O   X 

4 X  O O   X 

5 X  O O  X X 

O – well spin,  - can spin but fiber rip many time during spin, X-cannot spin 

Figure 10. Effect of di-epoxy cross-linked to mechanical strength of gelatin fiber. 
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Furthermore, tensile strength and % stain of fiber also investigate in wet condition by 

immerse each fiber into DI water for 2 min. before test. Compare the results by vary % 

di-epoxy (0, 3, 4, and 5%) and heat treatment temperature (80, 90, 100C). Results were 

shown in Figure 11 and Figure 12 for tensile stress and % stain respectively. 

  

 

 

 

Figure 11. Tensile strength of dry and wet test condition at different % di-epoxy cross-

linked. 
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Figure 12. % Strain of dry and wet test condition at different % di-epoxy cross-linked. 

 

GTA 

 From Figure 13, both tensile and knot strength results indicate that stress of 

fibers which cross-linked by GTA was improved when compared to original without 

GTA. Increasing of crosslinked time from 1 day, 2 days and 3 days trend to increase 

stress of fiber. After applied heat treatment, stress of fibers were improved, indicated 

that post-treatment can partially enhance the crosslinking [18, 21].  
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Figure 13. Effect of GTA cross-linked to mechanical strength of gelatin fiber. 

 

 

I.1.3.3 Water resistance 

 Furthermore, the comparison of 3 type of crosslink agent has been evaluated by 

water resistance ability. Fibers have been immersed into DI water and keep at room 

temperature. GlcNAc which shown the best result from sugar crosslinker was choose 

for compare with GTA, di-epoxy to original gelatin fiber. Each type of crosslinked 

fibers were applied heat treatment condition. Observed and compared the difference of 

each crosslinked fiber to water resistance property in the function of time. The results 

was shown in Figure 14, after immersed gelatin fiber into DI water, gelatin fiber 

without crosslink suddenly swelling as same as gelatin fiber crosslinked with epoxy 4%. 

After 1 day, gelatin fiber was completely dissolved and obtained homogeneous 

solutions while gelatin fiber with di-epoxy 4% more swelling but not dissolve. Gelatin 

fiber with epoxy 5% shown a little swelling but can see the fiber shape better than 

epoxy 4%. Gelatin fiber with GTA and GlcNAc crosslinked shown the good water 

resistance and good morphology up to 90 days. In addition, swelling ratio after 

immersed in water for 24h at room temperature of GTA, GlcNAc and di-epoxy 5% are 
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1.96, 2.40 and 3.77 respectively. Its can confirmed the results of water resistance that 

GlcNAc and GTA maintained their morphologies than di-epoxy. 
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Figure 14. Water resistance ability of each cross-linked fiber. 

 

 

I.1.4 Conclusions 

 Gelatin fibers were prepared with sugar, di-epoxy and GTA as cross-linking 

agents by dry spinning method which used only water as a solvent. The effect of each 

crossliked type were compared and evaluated. GlcNAc is a reducing sugar which shown 

good results in tensile stress and water resistance than the others sugar especially when 

applied heat treatment at 120C for 24 h. because of Maillard reaction. Di-epoxy 

compounds can improved the stress of gelatin fiber when add to gelatin solution by 

body-feed before spin, stress of fiber were increased follow by increased amount of di-

epoxy. Due to thermal decomposition of the gelatin chain when apply heat treatment to 

the fiber, stress of fibers remained the same or even lower. GTA vapour evaporate 

method, result to increase stress of fiber follow by increased time of crosslinked. And 

post-treatment can partially enhance the crosslinking results to stress of fibers was 

improved on heating. The comparison of each crosslinker by water resistance, GTA and 

GlcNAc crosslinked showed the good water resistance and good morphology up to 90 

days by less swelling and same shape of fibers. Finally, such gelatin fibers and fiber 

assembly is expected to be better use for several fields because gelatin is a safe material 

and the spinning method is a simple and environmental friendly method. 
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Chapter 2 

 

Optimum point of GTA vapour crosslink 

 

I.2.1 Introduction 

 Glutaraldehyde (GTA) is an organic compound with the formula 

CH2(CH2CHO)2, linear-5-carbon dialdehyde which clear, colorless oily liquid that 

soluble in all ratio of water and alcohol, as same as in organic solvent [1]. GTA is 

usually use as a protein crosslinking agent; sterilize medical, dental equipment, water 

treatment, preservative etc. GTA has had great success because of its commercial 

availability, low cost and high reactivity. It reacts rapidly with amine groups at neutral 

pH condition [1-2]. According to its high reactivity, GTA crosslink with gelatin fiber 

have been done by vapor crosslink. Our assumption is the reaction will start from the 

surface to core of fiber. The time of crosslinking is the one parameter that we interesting 

to study and find the optimum time. However, aldehyde is recognize that may cause 

sick building syndrome (SBS) and the one of the major pollutants of indoor air, sick 

house syndrome by irritation and corrosive to the skin, eyes and respiratory tract are the 

major symptoms [3-6]. In order to avoid unreacted and residual GTA after crosslinking 

with amino group in gelatin, reducing agent could be useful for neutralize the chemical. 

Sodium borohydride is an inorganic compound with the formula NaBH4 in form of 

white solid, usually in form of powder, is a general reducing agent that finds wide 

application in chemistry, both in the laboratory and on a technical scale. Bleaching 

wood pulp is the application which using large amounts of NaBH4 [7-8]. The compound 

is soluble in alcohols and some ethers but reacts with water in the acid and neutral 

condition. NaBH4 is a reagent of choice for the reduction of aldehydes and ketones. 

Furthermore, it has been also used for the reduction or reductive N-alkylation of amines, 

heterocyclic which containing nitrogen and oximes can be reduce by NaBH4 as well [9]. 

The mechanism of the reaction of NaBH4 with aldehydes and ketones can describe in 

two steps. In the first step, H atom separate from BH4 and react to the carbon of 

carbonyl group of aldehyde or ketone. Due to this step, C-H bond will be forms by 

breaks the double bond between C and O. The second step, new lone pair on the oxygen 

which remained from the first step will react with  proton from water or the others acid 
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to forms alcohol as the end of reduction mechanism (or an acid such as NH4Cl) is added 

to the alkoxide to make the alcohol. This is performed at the end of the reaction, a step 

referred to as the workup. 

 

 

 

 

Figure 1. The mechanism of the reaction of sodium borohydride with aldehydes and 

ketones; Reference:http://www.masterorganicchemistry.com/2011/08/12/reagent-friday-

sodium-borohydride-nabh4/  

 

In this lesson, we focus to study the optimum point of GTA crosslinking with gelatin 

fiber by vapor method including of reducing condition by NaBH4. Tensile strength will 

be measure to compare in each condition. 

 

I.2.2 Experimental 

I.2.2.1 Materials 

 Gelatin, JS200 (Mw=100,000; 200 bloom; type B) cow skin type in powder was 

from Koei transformation Ltd. GTA solution (25%) were from Wako Pure Chemical 

Industries, Ltd.  

 

I.2.2.2 Preparation of gelatin solutions and spin gelatin fiber 

 The solution of gelatin was prepared by dissolving gelatin powder in water 50% 

by weight. The mixture was covered and put in the electric water bath at temperature 

http://www.masterorganicchemistry.com/2011/08/12/reagent-friday-sodium-borohydride-nabh4/
http://www.masterorganicchemistry.com/2011/08/12/reagent-friday-sodium-borohydride-nabh4/
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50±2C for 30 min; stirred every 10 min to obtain homogeneous solution. The 

homogeneous solution of gelatin was filled up in cylinder (50±2C) which connected to 

a nozzle (0.83 mm. inner diameter). Control pressure in the range from 0.10±0.04 MPa. 

was applied on top to the droplet of injected solution. Collection was rotate with speed 

50±10 m/min to an aluminum foil wrapped on a collector. The separating distance 

between the needle tip and the aluminum foil was set to 1.4 m. (as same as Figure 1 in 

Chapter 1). The obtained fibers were kept on collector at room temperature for 24 h to 

remove residual moisture.  

 

I.2.2.3 Crosslink method 

 After spun gelatin fiber, the crosslinking process was carried out by placing the 

gelatin fiber in desiccator containing GTA aqueous solution and keep at room 

temperature. After crosslinking, the samples were rinse by immerse in methanol for 15 

min, 3 times to remove residual GTA. Time of crosslinking in desiccator has been 

evaluated to study optimum point time of GTA crosslinked system.  

 

I.2.2.4 Reducing with NaBH4 

 Reducing the crosslinked fiber with NaBH4 was done by immerse fibers after 

vapor crosslink in desiccator in 0.6 M NaBH4 / 0.05 M HCl solution for 5 hrs. The 

samples were rinse by immerse in methanol for 15 min, 3 times.  

 

I.2.3 Results and Discussion 

 After GTA vapor cross-linking, the fabrics became visibly yellowish due to the 

formation of aldimine linkages between the free amine groups of protein and GTA 

(Figure 2) [10-13]. And after reducing with NaBH4, the yellowish of fiber changed from 

bright to pale yellow which refers to reduction of N=C to N-C (Figure 2 and Figure 3). 

 



30 
 

 

Figure 2. Comparison of fiber’s color in each step. 

 

 

 

Figure 3.  Reaction scheme between gelatin and GTA. 

 

The effect of vapour crosslinking’s time to stress of fiber was showed in Figure 4. 

Stress of fiber in each test condition tensile and knot strength with and without heat 

treatment at 100C 24 hrs., show the same trend of results by stress of fiber gradually 

increase until almost stable after 7 days. These’re may indicate that increase time of 

crosslink seemed able to provide proper crosslinking degree until complete at around 7 

days. 

before crosslink   after crosslinked   after reduced by NaBH
4
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Figure 4. The effect of vapor crosslinking’s time to stress of fibers. 

 

Further neutralized condition, fiber which crosslinked for 5 days and applied heat 

treatment at 120C for 2 days was choosing to reduce with NaBH4. The mechanical 

property was showed in the Figure 5. Stress of fiber after reduction, remained the same 

or little higher while strain was decreased both tensile and knot strength showed the 

same trend of results. However, when compare with original fiber without crosslink 

strain of fiber still higher. 

 

 

Figure 5. The effect of reduced condition to mechanism property of fiber. 
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I.2.4 Conclusions 

 Gelatin micro-fiber was prepared with using GTA as crosslinking agent by 

vapor method. Mechanical property was evaluated in order to find the optimum 

crosslinked time, the result was found that stress of fiber reach the stable at 7 days. The 

toxicity induced by GTA cross-linking was could be controlled by reducing it with 

NaBH4. In all, the combination of results indicates that the NaBH4 is effective in 

reduction of the gelatin fiber which crosslinked by GTA. This result may be extended 

and may help promoting their general use of gelatin fiber in polymer composites. 
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Chapter 3 

 

Fabrication of gelatin nano fibers by electrospinning - aqueous method 

 

II.3.1 Introduction 

 Gelatin is a natural polymer and a fibrous protein that is present in the skin and 

bones of animals, synthesized by hydrolysis of the triple helix of collagen. Gelatin is a 

biocompatible protein, and when it enters living body, shows low anti-genecity and very 

high bio-absorptivity. The characteristic of heat reversibility is come from the compose 

between 3D gel network of gelatin and microcrystal interconnect with amorphous 

regions in coiled [1-2]. The important property of gelatin is the solution-gelation 

transition under aqueous condition. It has been reported that membranes of chitosan/ 

gelatin have so many biomedical applications [3]. Morover, the preparation of chitin/ 

gelatin membrane with N-acetyl-D-glucosamine (GlcNAc) according to Maillard 

reaction has been reported. The stress and elongation of chitin/ gelatin membrane with 

GlcNAc was higher than those without GlcNAc. Electrospinning is a method that 

modified from dry spinning concept for create membrane which consist from fiber in 

the nano size diameter. Nano fiber has more advantage about surface area and active 

surface site than micro fiber. Electrospinning technique is simple and cost-effective 

technique because just 3 apparatus could be required; feeding unit, voltage power 

supply and collector.   

 In this work we focus on the development of non-woven gelatin fabric by 

electrospinning. Polymeric fibers formed with the simultaneous evaporation of solvent 

by the action of high voltage to the polymer solution, electrospinning in the form of a 

non-woven fabric can be achieved. We have carried out electrospinning providing 

temperature on the basis of dry spinning. Fibers can be prepared to have a fiber diameter 

in the micro nanoscale. Nanofibrous non-woven fabrics have large surface area to 

volume ratio, and porosity. Gelatin is hydrophilic so we developed a cross-linked non-

woven fabric to improve the water resistance. Two cross-linking agent have been 

compared in this study. First is glutaraldehyde (GTA) bifunctional reagent by vapor 

cross-linking. Among the chemical cross-linking agents, GTA is the most widely used, 

due to its high efficiency of collagenous materials stabilization. Cross-linking of 
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collagenous samples with GTA involves the reaction of free amino groups of lysine or 

hydroxy lysine amino acid residues of the polypeptide chains with the aldehyde groups 

of GTA [1]. GTA is easily available, inexpensive and its aqueous solutions can 

effectively cross-link collagenous tissues in a relatively short period [4-5]. Another is 

GlcNAc, cross-linking is achieved by Maillard reaction on heat treatment. In this study, 

we developed a cross-linked non-woven gelatin nanofibrous fabric. Further the 

developed non-woven fabric was characterized as well as biocompatibility was studied. 

 

II.3.2 Experimental 

II.3.2.1 Materials  

Gelatin -JS200 cow skin type (Mw=100,000), Koei transformation Ltd. 

GlcNAc -Wako Pure Chemical Industries, Ltd. 

GTA -Wako Pure Chemical Industries, Ltd.  

Glycerine solution (Gly) -99% (mass/mass, Mw 92.09), Wako Pure Chemical Industries, 

Ltd. 

Phosphate Buffer Saline (PBS) -Wako Pure Chemical Industries, Ltd. 

 

II.3.2.2 Preparation of gelatin solutions 

 Solution was prepared by mixing glycerin 10% in distilled water and dissolving 

GlcNAc 5% in solution (% by weight of gelatin). After completely dissolved, add 

gelatin powder in the solution (sample which have no GlcNAc composition, gelatin was 

dissolved in distilled water directly). The mixture was covered and put in electric water 

bath at controlled temperature of 60 ± 2°C for 45 min (stirred at 15, 30 and 45 min) 

after that left in water bath for 45 min to remove entrapped air and obtain homogenous 

solution. Concentration of Gel was 20, 25, 30 and 35%. Viscosity of Gel solution was 

measure by Rheometer at 50°C (HAAKE RheoStress 600, EKO instruments, Japan). 

 

II.3.2.3 Electrospinning  

 The homogeneous solution of gelatin was filled in a 5 ml syringe connected with 

a needle. Temperature was controlled inside the syringe at 45-60°C. The needle was 

connected with the high voltage power supplier, and then applied 23 kV to the droplet 

of injected solution. The distance between collector and capillary tip was set at 7 cm. 
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and the collector was covered with aluminum foil. The collected fiber mats were left at 

least 3 hrs. to ensure complete removal of solvent. Details of electrospinning conditions 

are shown in Table 1-Table 3. Later, the samples were separated for different treatment 

conditions. Cross-linking of the fibers was done using GTA vapor for 48 hrs, following 

which the samples were rinsed by dipping in ethanol 20 times. Further neutralization of 

these fibers was done by immersing in 0.2M NaBH4 for 1 hr. For GlcNAc containing, 

gelatin fibers heating was provided for 48 h at 120°C in oven.  

 

Table 1. Conditions of electrospinning (gelatin only). 

Conc. of gelatin 

(%) 

Flow rate 

(x 10－
2
 ml/min) 

Conductivity 

(mS/m) 

Viscosity at 

50C (cP) 

Diameter (nm) 

20 19.6 129.2 193.9 254 

25 12.2 131.1 498.9 374 

30 4.6 136.5 1335.6 3825 

35 - 141.6 4345.5 - 

 

Table 2. Conditions of electrospinning (gelatin/ GlcNAc). 

Conc. of Gel 

(%) 

Flow rate 

(x 10－
2
 ml/min) 

Conductivity 

(mS/m) 

Viscosity at 

50C (cP) 

Diameter (nm) 

20 25.0 129.0 146.7 208 

25 14.7 134.5 313.5 358 

30 5.5 137.9 769.1 2700 

35 - 144.1 1947.3 - 

 

Table 3. Conditions of electrospinning (gelatin/ Gly). 

Conc. of Gel 

(%) 

Flow rate 

(x 10－
2
 ml/min) 

Conductivity 

(mS/m) 

Viscosity at 

50C (cP) 

Diameter (nm) 

20 48.8 120.4 168.7 186 

25 16.0 129.3 397.9 332 

30 6.5 130.1 1319.3 1280 

35 - 132.4 3442.5 - 

 

Remark; 35% Gel at all condition cannot spinning because high viscosity. 
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II.3.2.4 Characterization  

 The swelling and water uptake ability of the non-woven fabrics were studied in 

PBS (pH 7.4) and distilled water, respectively. Samples were immersed in PBS and 

water at room temperature for different time points (30 and 60 min). After the specific 

time point, samples were taken out and excess water was removed using a filter paper. 

The structural morphology of non-woven fabrics was characterized using SEM (JSM-

6700F (JEOL Ltd.), Tokyo, Japan) at 5 kV acceleration voltages. Composite fibers were 

analyzed using FTIR spectroscopy (Varian 670-IR Agilent Tech., Japan). Composite 

fibers were ground and mixed thoroughly with potassium bromide. The IR spectra of 

the samples were analyzed from 400-4000 cm
-1

. The mechanical property was analyzed 

using a universal testing machine (STA-1150, A&D company, Ltd., Japan).The cross-

head loading speed was set at 10 mm/min for 5N loading. Thermogravimetric analysis 

was carried out using TG/DTA instrument (SII TG-DTA6200) at a temperature ranging 

from 24-600C. 

 

II.3.2.5 Cell viability 

 Cell viability of the electrospun gelatin nanofibrous samples were evaluated 

using Alamar blue assay [6]. Human mesenchymal stem cells (hMSCs) were seeded at a 

density of 7500 cells/scaffold in a 96 well plate and incubated at different time points. 

Viability was analyzed by replacing media after 24 and 48 hrs with 200 µl basal 

medium containing 10% alamar solution. After required incubation the optical density 

was measured at 570 nm, with 600 nm as the reference wavelength, in a microplate 

reader (Biotek PowerWave XS, USA). Percentage cell viability was plotted by 

comparing with the control (cells+media).  

 

II.3.2.6 Cell attachment studies 

 hMSC attachment on the electrospun scaffolds was evaluated by cytoskeletal 

staining after 24 hrs of culture period. Cells were seeded at a density of 50,000 cells per 

scaffold in 24 well plate and maintained for 24 hrs. Further cells were fixed in 4% 

paraformaldehyde and permeabilized using 0.5% Triton X. Cytoskeletal staining was 

done using TRITC conjugated phalloidin and imaged in fluorescent microscope 

(Olympus BX 51). 
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II.3.3 Results and Discussion 

  Non-woven gelatin nanofibrous fabric was developed by electrospinning and 

was cross-linked using GTA vapour or GlcNAc addition followed by heat treatment. 

From Table 1- Table 3, it was found that 20% and 25% concentration of gelatin showed 

fiber diameter in the nanometer scale, but at 25% solution wastage was reduced. So we 

chose 25% condition for further investigation. By placing non-woven fabrics into the 

desiccators filled with GTA vapor, the gelatin could be reasonably cross-linked. Cross-

linking of collagenous materials with GTA involves the reaction of free amino group of 

lysine or hydrolysine amino acid residues of polypeptide chains with the aldehyde 

group of GTA [1]. From Figure 1, after GTA vapor cross-linking; the fabrics became 

visibly yellowish due to the establishment of aldimine linkages between the free amine 

groups of protein and GTA [7-10]. After reducing with NaBH4, the yellowish of fabric 

changed from bright to pale yellow which refers to reduction of N=C to N-C. While 

GlcNAc and amino group can crosslink by Maillard reaction producing brown colored 

compound due to the interaction between carbonyl group, reducing sugar and amino 

compound. 

 

 

Figure 1. Images of fabrics (I) gelatin, (II) gelatin / GTA, (III) gelatinl/ GTA after 

reducing with NaBH4, (IV) gelatin/ GlcNAc and (V) gelatin/ GlcNAc after heat 

treatment. 
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Figure 2 shows the SEM observation of nanofibrous non-woven fabrics arranged 

randomly. The smooth and continuous fabrics with no beads could be produced from all 

compositions of the cross-linking materials at 5 kV applied voltage. From Fig 2A-2D, it 

is clear that the morphology of post cross-linked (using GTA vapor) non-woven fabrics 

was found to differ from the original. When comparing with GlcNAc heat treated fibers 

less interconnectivity than GTA cross-linking was observed. From Figure 3A, it is 

evident that the regenerated material is pure gelatin powder with split transmittance 

band, at 1660 cm
−1

 corresponding to the amide. The spectra showed no difference in 

gelatin powder, gelatin fabrics and gelatin fabrics cross-linked by GTA before and after 

reduced by NaBH4. This implies that the vapor cross-linking method affect only the 

surface of the fabrics so it would be difficult to indicate the difference of functional 

group in the fabrics before and after cross-linking. In Figure 3B, the IR spectra studies 

of sample have been compared with gelatin powder and GlcNAc powder. The presence 

of peaks proved that heat treatment did not affect the functional groups of the fibers.  

From Figure 4, the tensile results indicate that stress of non-woven fabrics, which were 

cross-linked by either method, was improved when compared to original and GTA 

cross-linked non-woven fabrics showed stress values higher than the GlcNAc system. In 

the contrary, % strain (the elongation) of fabrics remained the same or even higher. It is 

suggested that moisture content could play a greater role than the cross-linking in 

regulating the elastic and plastic behaviour of this natural biomaterial [4]. In addition, 

glycerine improved the strain of fabric as we expected and NaBH4 reduction of GTA 

vapour cross-linked fabrics also didn’t affect its mechanical properties. 



41 
 

 

Figure 2. SEM images of gelatin and gelatin/ GlcNAc fabrics; (A, B) gelatin before and 

after cross-linking with GTA respectively. (C, D) gelatin/ glycerine before and after 

cross-linking with GTA respectively. (E, F) gelatin/ GlcNAc before and after heat 

treatment respectively. (G, H) gelatin/ GlcNAc/ glycerine before and after heat 

treatment respectively; scale bar 10 microns. 
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Figure 3. (A) FT-IR spectra of gelatin/ GTA fabrics : a) gelatin powder, b) gelatin 

fabric, c) gelatin/ GTA fabric, d) gelatin/ GTA/ NABH4 fabric, e) gelatin/ glycerin  

fabric, f) gelatin/ glycerin/ GTA fabric, g) gelatin/ glycerin/ GTA/ NABH4 fabric ; (B) 

FT-IR spectra of gelatin/ GlcNAc fabrics : a) gelatin powder, h) GlcNAc powder, i) 

gelatin/ GlcNAc fabric, j) gelatin/ GlcNAc/ heat treated fabric, k) gelatin/ glycerin/ 

GlcNAc fabric and l) gelatin/ glycerin/ GlcNAc /heat treated. 

 

The swelling capacity of the fibers was performed to quantify the amount of swelling 

that occurs when non-woven fabrics were exposed to water and PBS for 30 and 60 min. 

As shown in Figure 5, higher swelling and water uptake ability was observed in gelatin/ 

GlcNAc (Figure 5E-H). The gelatin/ GlcNAc fabric showed completely swollen 

morphology. It may be due to the hydrophilic property of GlcNAc. While the non-

woven fabrics after cross-linking with GTA only a slight change in morphology was 

observed. 
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Figure 4. Mechanical property of gelatin/ GTA and gelatin/ GlcNAc fabrics. 
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Figure 5. Swelling in PBS and water: (A, B) gelatin/ GTA cross-linked fabrics 

immersed in water for 30 and PBS for 60 min respectively. (C, D) gelatin/ glycerin/ 

GTA cross-linked fabrics immersed in water for 30 and PBS for 60 min respectively. (E, 

F) Heat treated gelatin/ GlcNAc fabrics immersed in water for 30 and PBS for 60 min 

respectively. (G, H) Heat treated gelatin/ glycerin/ GlcNAc fabrics immersed in water 
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for 30 and PBS for 60 min respectively; scale bar 10 microns. (*GTA fabrics in 

neutralized condition). 

Figure 6 shows the thermogram of the gelatin at each test condition. The thermogram 

showed an initial weight loss of 10%, which was attributed to the loss of moisture. The 

initial dip at 100 °C in the thermogram of composite non-woven fabrics was due to 

moisture loss and thereafter it got straightened. This indicates that there was no phase 

change in the composite structure. Gelatin powder, gelatin/ GlcNAc fabrics heat treated 

and gelatin cross-linked with GTA showed similar results. 

 

 

 

Figure 6. Thermogravimetric analysis of the gelatin non-woven fabrics at each 

condition. 

 

Figure 7 shows the percentage cell viability observed on the samples after 24 and 48 

hours evaluated by Alamar blue assay. All the samples showed more than 80% viability. 

Viability was slightly more for gelatin/ glycerin sample cross-linked with GTA vapors 

and further neutralized. Of cross-linking with GlcNAc, sample containing glycerin 

tends to show better viability. Cells tend to maintain its viability even after 48 hours 

indicating the cytocompatible nature of the developed scaffold. This study indicates that 
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all the samples showed a tendency for contributing towards cell proliferation on how 

much ever cells that had initially attached.  

 

               

 

Figure 7. Cell viability determined by Alamar blue assay of cells seeded on gelatin 

nanofibrous scaffolds in comparison with control; (*GTA fabrics in neutralized 

condition). 

 

Based on the cell attachment visualized by the actin staining of cells, all the samples 

showed appreciable cell attachment. hMSCs maintained their spindle shaped 

morphology in all the samples, but, the number of cell attached was slightly reduced in 

gelatin/ GlcNAc sample after heat treatment (Figure 8A). The addition of glycerin into 

this significantly changed the cell responsiveness. Elongation of hMSCs was observed 

in this sample (Figure 8B). Moreover good cell spreading was observed as cells were 

seen in most of the frames taken. GTA vapor cross-linking showed cell clumping in the 

field of vision but the morphology of cell was not affected (Figure 8C). The 

enhancement in cytocompatibility was evident after addition of glycerin to this scaffold 

(Figure 8D), where cells tend to spread in more area and elongation of cell was also 

seen. 
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Figure 8. Actin staining of hMSCs depicting the cell attachment on the heat treated 

samples gelatin/ GlcNAc (A), gelatin/ GlcNAc/ glycerin (B) and GTA vapor cross-

linked gelatin (C) and gelatin/ glycerine (D). Scale bar indicates 50 microns. (*GTA 

fabrics in neutralized condition). 

 

II.3.4 Conclusions 

 Gelatin non-woven fabric has been prepared using GlcNAc and GTA as cross-

linker by electrospinning method. Gelatin non-woven fabrics with 25% gelatin 

concentration showed fiber diameter in the nanoscale. In terms of mechanical property, 

the gelatin non-woven fabric with GTA cross-linking showed high mechanical property 

than the GlcNAc system. The swelling and water uptake ability in water and PBS 

showed that non-woven fabrics with GTA-cross linking has showed slight change in 

morphology. The thermogram of composite fibers indicates that there was no phase 

change in the composite structure. The toxicity induced by GTA cross-linking was 

could be controlled by neutralizing it with NaBH4. In both the cross-linking methods 

addition of glycerin could further overpower the toxicity induced due to cross-linkers. 

From the cell studies conducted, it is evident that the developed gelatin fibers showed 



48 
 

good cytocompatibility and hence would find profound application in various tissue 

engineering. 
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Chapter 4 

 

Produce align fiber by electrospinning rotating rod 

 

II.4.1 Introduction 

 Electrospinning is a simple and cost-effective technique which widely used to 

fabricate nano-scale fibers. With smaller pores and higher surface area when compare 

with regular fibers, electrospun fibers have been successfully applied in various fields, 

such as tissue engineering , filtration industrial, biomedical, pharmaceutical etc.[1]. Set 

up of electrospinning apparatus basically consists of three major components: syringe 

with metal needle (feeding unit), voltage power supply and a grounded collector [2]. 

The electric voltage is applied to the syringe which contain polymer solution, will create 

electrostatic force at the surface tension of polymer. The polymer jet will spread out in 

fiber forms from the syringe to the opposite charged collector when electric voltages 

which apply to the system is stronger than surface tension [3-4]. However continuous 

single nanofibers or uniaxial fiber are obtained because the unstable of current flow 

inpolymer jest which flight from the syringe tip to the corrector, effect to bending the 

direction of fiber jet [5]. Align electrospun polymer fiber shown the good properties 

than uniaxial fiber for example structural stability, mechanical property, support the 

formation of tissue of periodontal [6], control cellular organization [7] etc. Several 

techniques have been developed to create align electrospun nanofibers such as rotating 

drum, rotating disk, opposite needle, parallel bar etc.(Figure 1) [4] and some technique 

have been obtained [8]. It has been suggested that by rotating drum collector at very 

high speed than 1000 rpm, electrospun nanofibers could be aligned circumference [5]. 

However, many research found that only partial alignment of fibers could be found 

follow this setup. Figure 2 is one of the setup methods for electrospinning by give a gap 

between two parallel corrector which can generate aligned nanofiber.  Due to 

electrostatic force effect to the fiber direction that crosses the space between parallel 

corrector, the aligned fiber was created. Figure 2B is the estimated electric field 

between the needle and the collector. The arrows refer to the direction of the 

electrostatic field in the system [9].  
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Figure 1. Example of techniques for electrospinning systems to produce aligned fibers 

[4].  

 

 

Figure 2. (A) Schematic illustration of the setup for electrospinning to generate 

uniaxially aligned nanofibers. (B) The collector contained two separated conductive 

silicon stripes.  
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Due to all of reason, we focus to develop of non-woven gelatin fabric to tubular 

structure especially align fiber by use the concept of rotating a drum (cylinder, rod) 

collector at very high rotating speed and by set up parallel electric bar beside of rotating 

rod expect to spin align fiber, find basic information and develop gelatin fabric material 

for use as artificial blood vessels or in the field of tissue engineering in the future. 

 

II.4.2 Experimental 

II.4.2.1 Material and instruments 

 Gelatin -JS200 pork skin type (Mw=100,000), Koei transformation Ltd. Figure 3 

show the instrument of rod rotating electrospinning. The rotating rod collector (A) made 

from stainless diameter 1 cm. Spinneret unit including of syringe and temperature 

control (B). Motor Oriental Motor, 0-4000 rpm, Japan (C). Electric applied voltage (D). 

  

 

    

Figure 3. Rod rotating spinning equipment. 
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II.4.2.2 Preparation of gelatin solutions 

 Solution was prepared by mixing gelatin powder in distilled water for 25% 

gelatin solution (by weight). The mixture was covered and put in electric water bath at 

controlled temperature of 60 ± 2°C for 45 min (stirred at 15, 30 and 45 min) after that 

left in water bath for 45 min to remove entrapped air and obtain homogenous solution.  

 

II.4.2.3 Electrospinning  

II.4.2.3.1 Normal rod rotating setting (random fiber) 

 The homogeneous solution of gelatin was filled in a 5 ml syringe connected with 

a needle. Temperature was controlled inside the syringe at 45-60°C. The needle was 

connected with the high voltage power supply vary in range of 8-23 kV to the droplet of 

injected solution. The distance between collector and capillary tip was also varying to 

find the suitable condition. The rotating rod which connects to motor was use as 

collector. The collected fiber mats were left at least 3 h to ensure complete removal of 

solvent. Set up of rod rotating spinning is show in Figure 4. First, basic condition will 

be finding in order to evaluate the spin parameter including of distance between tips and 

rotating collector, suitable electric voltage and rod rotation speed.  

 

 

  

 Figure 4. Rod rotating spinning equipment. 
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II.4.2.3.2 Parallel electric bar setting (align fiber) 

 Follow concept of introducing a gap into the conventional collector as Figure 2, 

pararell bar which connect to cathode electric has been set up at both side of rod rotating 

collector (Figure 5). Distance between both side of cathode bar and suitable electric 

voltage will vary for investigate the good condition which can create aligned nano fiber. 

 

 

 

 

Figure 5. Rod rotating spinning equipment. 

 

II.4.3 Results and Discussion 

II.4.3.1 Normal rod rotating setting (random fiber) 

 Table 1 shows the effect of distance between nozzle tips and rotating rod 

collector at different applied electric voltage. Higher voltage requires more distance to 

obtain spun fiber which high productivity and smooth surface. The appropriate distance 

for spin fiber at 8, 16 and 23 kV is 3, 4 and 5 cm respectively. Because at the short 

distance, solvent is not completely vaporized results to dry fiber cannot be collected. In 

addition, High voltages are associated with higher productivity, which in turn draw 

more material out of nozzle [10].  

 

 

＋ 

- 
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Table 1. Relation between distance from nozzle tip to rod collector and applied electric 

voltage. 

kV  \  x cm 1 2 3 4 5 

8 X  O O O 

16 X X  O O 

23 X X X  O 

 

X - fiber doesn’t dry, solution spread on the rod collector 

 - fiber doesn’t completely dry, low efficiency 

O - good spun fiber and efficiency 

 

From Table 1, spinning condition at 23 kV and distance 5 cm from nozzle tips to rod 

collector has been choose to investigate the effect of rotation speed by vary from 100-

4000 rpm. In addition, the directions of rotation (clockwise–anticlockwise) also test to 

evaluate the diameter and direction of spun gelatin fiber. The results was show in Table 

2, increase rotation speed results to little decrease average diameter of fiber and the 

direction of rotation given the same results. However align fiber cannot create follow 

this set up; the example of spun fiber was shown in Figure 6. There can confirm that 

when a conventional rotating mandrel is used, the polymer jet spreads over the entire 

length of the mandrel, resulting in relatively poor alignment of spun fiber [4].  

  

Table 2. The effect of rotation speed to spun fiber at constant distance from nozzle tips 

to rod rotating collector at 5 cm. and 23kV applied electric voltage. 

 

Rotation (rpm) 100 500 1000 2000 3000 4000 

Diameter (nm) 200 180 
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Figure 6. SEM image of gelatin spun nano-fiber at voltage 23 kV, rotation speed 4000 

rpm, distance X = 5 cm. 

 

II.4.3.2 Parallel electric bar with rod rotating setting (align fiber) 

 Figure 7 shows SEM image of spun gelatin nano fibers at constant electric 

voltage 23 kV and rotation speed=4000 rpm by varied distance between parallel cathode 

2, 3 and 4 cm. All condition had average diameters in range of 200-250 nm. These 

images found that the gelatin were partial aligned at distance between parallel cathode 3 

cm (Figure 7c and 7d). Electric voltage that applied to system induce electrostatic and 

interaction between different charge of fiber and collector, results to force the fiber’s 

direction go straight to the ground collector and obtained aligned fiber [11]. The best 

alignment of the nanofibers that we found was obtained with 3 cm width of gap between 

parallel bar and rotating rod collector. 
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Figure 7. SEM image at difference of distance between rotating rod and cathode at 

constant electric voltage 23 kV and rotation speed=4000 rpm (a), (b) 2 cm at 

magnification 2000 and 5000 respectively, (c), (d) 3 cm at magnification 2000 and 5000 

respectively (e), (f) 4 cm at magnification 2000 and 5000 respectively  

From Figure 8, spinning condition at 4000 rpm and distance 3 cm of the parallel 

negative charge has been choose to investigate the effect of electric voltage by vary 

from 8, 16 and 23 kV. The results show in Figure 8, all condition had average diameters 

a 

d 

e f 

c 

b 
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in range of 200-250 nm. These images found that at 23 kV is still the good condition. 

This may came from at lower voltage; electrostatic forces were not strong enough to 

form continuous jet from the tip of the syringe needle. Then electric field between 

negative parallel bars was effect to motion of the fiber.  

 

       

       

       

Figure 8. SEM image at difference of electric voltage, constant rotation speed=4000 

rpm and distance between rotating rod and cathode = 3 cm (a), (b) 8 kV at 

magnification 2000 and 5000 respectively, (c), (d) 16 kV at magnification 2000 and 

5000 respectively (e), (f) 23 kV at magnification 2000 and 5000 respectively. 

a b 

c d 

e f 
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II.4.4 Conclusions 

 Fabrication of gelatin nano-fibers tubular structure were prepared by 

electrospinning. The basic setting to create random fiber (nonaxially) and aligned fiber 

(uniaxially) had been found. Rotating a drum collector at very high rotating speed, 

relatively poor alignment of spun fiber. Electrospinning with a rotating drum collector 

consisting of parallel electric bar separated by gap was effective to prepare aligned fiber. 

The electrospinning conditions that gave the best alignment of are 4000 rpm and 

distance between parallel electric bar 3 cm and applied electric voltage 23 kV. The 

development of non-woven gelatin fabric to tubular structure is possible such as 

combine with the others polymer, expected to use as artificial blood vessels in the future. 
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Chapter 5 

 

Preparation and characterization of gelatin and composite gelatin sponge 

for biomaterial application 

 

III.5.1 Introduction 

 In the field of tissue engineering and bone tissue engineering, the important 

elements are including of cell, growth factor and three-dimensional cell matrixes or 

scaffold [1]. The suitable scaffold containing growth factor should proper 

biodegradability including of discharge own matrix (scaffold and growth factor) and be 

as establishment for bone osteo-intergration which affects the stability of new implants 

[2]. Ideally, the completely degradation of scaffold is necessary in order to prevent the 

other reaction from the implant with original tissue [3]. In addition, size and porosity of 

scaffold are the important parameters which results to the supply of growth factor 

mechanism and degradation of scaffold itself ability [4]. Moreover, the morphology of 

pore size is strongly influent to implanted scaffold ability such as rate of tissue ingrowth 

[3]. From all of reason, in this research we focus to study in the scaffold element in 

form of sponge which used gelatin as a main material. The sponge form of gelatin has 

been well-characterized as a scaffold material for drug delivery systems [5] and as a 

matrix for osteoconductive calcium phosphate ceramics [6] in bone tissue engineering 

[7]. However the extraction process of collagen to produced gelatin, destructed natural 

crosslink in the collagen structure results to poor mechanical property of gelatin [8]. In 

order to improve the mechanical property and improve stability of gelatin scaffold 

(sponge) during implantation, gelatin scaffold usually react or stabilized with cross-

linking agent [9]. We use Glutaraldehyde (GTA) and N-Acethyl-D-Glucosamine 

(GlcNAc) for crosslink with gelatin sponge. The objective of this study were the 

production, characterization and comparison the gelatin composite sponge with different 

crosslinking in many property by expected to use as the basic information and develop 

gelatin sponge in the field of biomedical or bone tissue engineering in the future. 
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III.5.2 Experimental 

III.5.2.1 Materials 

Gelatin -PGS 250-WIA (Mw100,000), KOEI CHEMICAL. 

Chitosan- FM-80, Koyo Chemical Co. Ltd. 

Lysozyme (5.3x10
4
units/ml)- Fluka company. 

Phosphate Buffered Saline  (PBS. pH 7.4)- Qualified, Life Technologies. 

GlcNAc and GTA 25% solution were purchased from Wako Chemical Industries. 

Others chemicals reagent were purchased from Wako Chemical Industries and used 

without further purification. 

 

III.5.2.2 Preparation of Sponge 

      The composite sponge was prepared by dissolving gelatin, 5.6 w/w% chitosan 

solutions in acetic acid and GlcNAc into the DI water. The mixture was covered and put 

in the electric water bath at temperature 50 ± 2C for 10 hrs. to remove entrapped air 

and obtain homogeneous solution. After 10 hrs. let the sample cool down at room 

temperature. Then, samples were freeze-dried to obtain the sponge. Samples were 

separate to different condition. First, cross link the sponge with GTA (sponge without 

GlcNAc) by vapor evaporate method for 48 hrs. After that, rinsing with methanol 30 

min for 3 times. Another which have GlcNAc were heat at 100C x 24 hrs. in the oven. 

The concentration of mixed samples and test condition which applied to each sample 

was shown in the Table 1. Thermogravimetric analyses of the scaffolds were carried out 

using TG/ DTA instrument (SII EXSTAR 6000) at a temperature range of 10-550C. In 

addition, the chitin/ poly-butylene succinate (PBS) sponge was also prepared in order to 

compare the result with gelatin composite sponge in some properties. Chitin (α-Chitin; 

85% degree of acetylation which obtained from Koyo Chemical Co. Ltd., Koyo, Japan.) 

was prepared in methanol saturated with CaCl2 to obtain chitin solution (2% w/v). PBS 

(powder was purchased from Sigma Aldrich, St. Louis, MO, USA) was dissolved in 

chloroform (0.5% w/v). Different ratios of chitin and PBS solutions were mixed to form 

gels of 10%–30% v/v of PBS. The solutions were blended under heating, and stirred 

continuously until a gel was formed; the latter was dialyzed against distilled water for 3 

days, and freeze drying for 24 h.     
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Table 1. The preparation of chitosan/ gelatin. 

Condition 

5% gelatin solution 

gelatin chitosan GlcNAc 
chitosan + 

GlcNAc 

Heat treatment at 100C x 24 hrs. X X O O 

GTA vapor cross-link 48 hrs. O O X X 

Chitosan  0.8%* X O X O 

GlcNAc 5%* X X O O 

  

* In relation to the gelatin mass, X = Not detect and O = Detect 

 

III.5.2.3 Porosity and Pore size  

 Porosity of the composite sponges was determined using liquid displacement 

method [10]. Sample dimensions were measured using a vernier calliper and volume 

(V) was calculated. Briefly, samples of measured weight (Wi) were soaked in a known 

volume of ethanol for 24 hrs. to allow ethanol to penetrate into the pores of the sample. 

The final weight of the sample was noted as Wf. Porosity was calculated using the 

following equation. 

 

% 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = ⌊
(𝑊𝑓 − 𝑊𝑖)

 EtOH 𝑥 𝑉
⌋ 𝑥 100 

 

EtOH: density of ethanol 

In addition, pore size of composite sponge was obtained from calculation. 

 

III.5.2.4 Swelling 

 The swelling was studied in Phosphate Buffer Saline (PBS, pH 7.4). Dry weight 

of the composite sponges was noted as Wi. Samples were immersed in PBS at 37◦C for 

24 hrs. and then taken out and wet weight was taken as Wf, after removing the excess 

water with filter paper. Swelling ratio was determined using the formula: 

 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =  
𝑊𝑓 − 𝑊𝑖

𝑊𝑖
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III.5.2.5 Biodegradation   

 In vitro biodegradation of the composite sponge was studied in PBS with 

lysozyme at 37◦C. Initial weight (Wi) samples after incubated at different time points 

were taken out and washed with deionized water to remove the salts and freeze dried. 

Dry weight of the samples was noted as Wd. Degradation percentage was calculated 

using the equation: 

 

%𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =  [
(𝑊𝑖 − 𝑊𝑑)

𝑊𝑖
] 𝑥 100 

 

III.5.3 Results and Discussion 

III.5.3.1 Preparation of Sponge 

      Figure 1 shown the sponge after preparations. From different condition; cross 

link the sponge after freeze-dried with GTA for 48 hrs. [(Figure 1a) gelatin/ GTA 48 hrs. 

and (Figure 1b) gelatin/ chitosan/ GTA 48 hrs.] and GlcNAc with heat treatment 100C 

x 24 hrs. [(Figure 1c) gelatin/ GlcNAc/ 100C x 24 hrs. and (Figure 1d) gelatin/ 

Chitosan/ GlcNAc/ 100C x 24 hrs.]. The sponge with heat treatment condition showed 

the color more brown than crosslink with GTA condition according to Maillard reaction, 

which produces browning compounds due to the interactions between carbonyl group of 

GlcNAc and amino compounds of chitosan and gelatin. The surface morphology of the 

composite sponges was shown by SEM image (Figure 1a-1d). In chitin/ PBS system 

(Figure 1e-1g), increase concentration of PBS results to reduced porosity of the scaffold. 

However, all of composite sponges showed an interconnected porous structure in the 

micrometer scale. An optimum porosity is a prerequisite for better gas and nutrient 

exchange. The macro-porous nature of the scaffold also aid in proper cell infiltration, 

and a homogeneous cell-laden construct could be achieved. Figure 2 shown thermogram 

of the composite sponge. The thermogram of all sponge showed an initial weight loss of 

10%, which was attributed to the loss of moisture. The initial dip at 100 ◦C in the 

thermogram of composite scaffolds was due to moisture loss and thereafter it got 

straightened. This indicates that there is no phase change in the composite structure.  
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                           (e)                                       (f)                                        (g) 

 

Figure 1. (a) gelatin/ GTA 48 hrs, (b) gelatin/ chitosan/ GTA 48 hrs., (c) gelatin/ 

GlcNAc/ heat treatment 100C x 24 hrs. and (d) gelatin/ chitosan/ GlcNAc/ heat 

treatment 100C x 24 hrs, (e) chitin / PBS 10%, (f) chitin/ PBS 20% and (g) chitin/ PBS 

30%. Scale bar represent 1.5 cm  and 500 m for sponge figure and SEM image 

respectively.  
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Figure 2. Thermogravimetric analysis of the composite sponge. 

 

 

III.5.3.2 Porosity and Pore size distribution 

 The porous nature of GTA and GlcNAc composite sponges were evaluated, 

GTA group showed porosity lower than 50%. Whereas the GlcNAc sponges showed 

higher porosity than 60%, especially gelatin/ chitosan/ GlcNAc/ heat treatment 100C x 

24 hrs. sponge showed the highest porosity 82% (Figure 3). A highly porous structure is 

a very beneficial property for a tissue engineering material. The pore size range of 4 

composite sponge was 60 - 700 m and the mean pore size for  was 220, 340, 150 and 

210 m for gelatin/ chitosan/ GTA 48 hrs., gelatin/ GTA 48 hrs., gelatin/ chitosan/ 

GlcNAc/ heat treatment 100C x 24 hrs. and gelatin/ GlcNAc/ heat treatment 100C x 

24 hrs. respectively (Figure 4). GTA cross linked group sponge shown the higher pore 

size than GlcNAc group. 
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Figure 3. Porosity studies of composite sponge.  
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Figure 4. Pore size distribution of composite sponge. 

 

III.5.3.3 Swelling  

 The swelling capacity of PBS was showed in Figure 5. A higher swelling ability 

was observed in chitin system and Gel/ GlcNAc than GTA sponges group. This is due 

to the higher porosity of sponges as compared to the GTA sponges group which confirm 

the results from Figure 1 and Figure 3. In addition, the swelling behaviors of gelatin, 

chitin and chitosan are depends on number of hydrophilic groups like hydroxyl, 

carboxyl and amino groups which effect to swelling ability [11].  

 

III.5.3.4 Biodegradation  

 Enzymatic degradation behavior of the composite sponges was studied by 

incubating the samples in solution containing lysozyme at 37◦C for 7, 18 and 25 days.  

Percentage degradation of the composite sponge as a function of time is shown in 

Figure 6. GlcNAc composite sponges showed the higher degradation rate after 25 days, 

can be attributed to the comparatively higher swelling and porosity of the composite 

sponges which makes the GlcNAc group available for the action of lysozyme [12]. 
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Figure 5. Swelling ratio in PBS. 

 

 

Figure 6. Biodegradation studies of composite sponges in PBS containing lysozyme. 

 

0

2

4

6

8

10

12

14

16

18

20
Sw

el
lin

g 
ra

ti
o

  

0

10

20

30

40

50

60

70

80

90

100

7 days 18 days 25 days

D
e

gr
ad

ab
le

 (
%

) 

Gel/ GTA 48h Gel/ CTS/ GTA 48h

Gel/ GlcNAc/ heat 100°C 24h Gel/ CTS/GlcNAc/ heat 100°C 24h



70 
 

III.5.4 Conclusions 

      The gelatin/ chitosan composite were prepared by using GlcNAc and GTA as 

cross-linker into the form of a sponge by freeze dried. The results from SEM 

observation shown that the interconnected porosity of each composite sponge was well 

demonstrated. Thermogravimetric indicated that there is no phase change in the 

composite structures all of sponge. Swelling ratio and degradation rate of composite 

sponge which prepared with GlcNAc system were higher, due to higher porosity of the 

composite sponges. The comparison of gelatin composite sponge with chitin/ PBS 

sponge, chitin / PBS showed the higher swelling ratio due to high porosity which can 

observe from SEM image. These results may come from the different solvent and 

preparation method. However the pore size of both sponge system were in the micro 

scale.  
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Chapter 6 

 

Adsorption and desorption behavior of BSA on gelatin/ chitosan sponge 

 

III.6.1 Introduction 

 Gelatin is a mixture of peptides and proteins that derived from collagen. 

Treatment by acid or base hydrolysis of collagen as known in the commercial name of 

gelatin type A or B respectively. Gelatin is biocompatible when it takes in human and 

animal body, it shows low antigenicity [1] in contrast with collagen that antigenicity 

according to its animal origin [2-3]. In addition, chitosan has been studied as 

biomaterial, food, and chemical industries because its good biocompatibility, 

biodegradability, hemostasis etc. [4-9]. It’s has been used in form of nanofibers, 

scaffolds, membranes, sponges etc. [10]. Chitosan/ gelatin sponge with the others 

materials has been successfully prepare for wound dressing [11], tissue engineering [12], 

bone tissue engineering [13] and vital organ engineering [14] etc. 

 In this research, we focus to study about gelatin/ chitosan sponge by cross-link 

with N-Acetyl-D-glucosamine (GlcNAc) and Glutaraldyhude (GTA). According to 

Maillard reaction, carbonyl group in GlcNAc (and others reducing suger) can react with 

amino group in gelatin occur crosslink reaction which create browning compounds [1]. 

GTA is commercial availability, low cost and its high reactivity. It reacts rapidly with 

amine groups at around neutral pH condition [15-16]. Protein adsorption is very 

important in the field of biomedical research. The interaction between protein and 

surface material that occur for adsorption can determine by a) changes in the hydration 

of protein molecule and material’s surface, b) electrostatic interaction and c) structure 

rearrangement in the adsorbing protein molecule [17-18]. We used Fluorescein 

isothiocyanate labeling of Bovine serum albumin (FITC-BSA) for protein adsorption as 

a model instead of growth factor in this study. FITC is one of the simplest and most 

commonly used reagents for labeling proteins. The isothiocyanate reactive group 

(N=C=S) of FITC can form bonds with amine on proteins (Figure 1). 
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Figure 1. FITC labeling of protein structure. 

 

The effect of concentration, temperature and pH to adsorption and desorption behavior 

of sponge were investigated. The adsorption constant and thermodynamic parameter 

was also evaluated in order to use the data as basic information of gelatin/ chitosan 

sponge to apply or improve property in field of biomaterial. 

 

III.6.2 Experimental 

III.6.2.1 Materials 

Gelatin: PGS 250-WIA was purchased from KOEI CHEMICAL. 

Chitosan : FM-80 was received from Koyo Chemical Co. Ltd.   

BSA fraction V, 96% was purchased from Sigma-Aldrich Co. 

GlcNAc, Phosphate Buffer Saline (PBS, pH 7.4), FITC ( 95%) were purchased from 

Wako Pure Chemical Industries, Ltd.  

 

III.6.2.2 Preparation of FITC-BSA 

 BSA was labeled with FITC for used as protein adsorption model in order to 

avoid the effect of gelatin adsorption at the same wavelength of BSA. First, 3 mg/ml 

BSA solution was prepared in 0.1 mol/ l carbonate buffer (pH = 9.0). Mixing with 1 mg/ 

ml FITC solution in Dimethyl sulfoxide (BSA solution 1 mg/ ml: FITC solution 100 g) 

keep overnight at 4
o
C. To remove any uncoupled FITC, use dialysis against water [19]. 

The light absorption at 494 nm by UV-Vis spectrophotometer was finally below 0.003 

for the supernatant. The concentration and F : P ratio were determined according to the 
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methods described by the manufacturer (Thermo Scientific, Tech tip #31). In every 

preparation step have to avoid the light.    

 

Calculate molarity of the protein: 

 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑀) =
𝐴280−(𝐴𝑚𝑎𝑥 ×𝐶𝐹)

𝜀
 × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ……….....(1) 

 

ε = protein molar extinction coefficient (BSA ~43,824 M-1 cm-1@280nm) 

Amax = Absorbance (A) of a dye solution measured at the wavelength maximum (FITC 

= 494 nm) 

CF = Correction factor; adjusts for the amount of absorbance at 280 nm cause by dye 

(FITC = A280/ A494nm) 

 

Calculate the degree of labeling: 

𝑀𝑜𝑙𝑒𝑠 𝑑𝑦𝑒 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =  
𝐴𝑚𝑎𝑥 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝜀′×𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑀)
 × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 …(2) 

 

ε′ = molar extinction coefficient of the fluorescent dye (BSA ~68,000 M-1 cm-

1@494nm) 

 

III.6.2.3 Adsorption  

 The adsorption sponge was determined by immersing the sponge  0.1g in 

FITC-BSA in PBS until reaching adsorption equilibrium, the solution were sampling 

and measured by using a Spectrofluorometer at excitation and emission wavelength 495 

nm and 565 nm respectively. Characterize the absorbance peaks and estimate the BSA 

concentration by use of a predetermined standard concentration–intensity calibration 

curve. FITC-BSA was varying at 0.1-4.0 mg/ml in PBS pH 7.4 at room temperature 

have been investigated to study the effect of solution concentration. And same 

concentration of FITC-BSA with different temperature at 10, 25 (R.T.), 37, 50 and 70C, 

also carried out to study the effect of temperature to adsorption efficiency. Adsorption 

constant and Thermodynamic parameter was evaluated. 
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III.6.2.4 Desorption 

 Similarly, the release study was also carried out for the same FITC-BSA loaded 

on the sponge after wash in DI water, applied freeze-dried again to sponge. Immerse 

adsorbed sponge in 25 ml of PBS pH 7.4, 37C. The solution were sampling and 

measured by using a spectrofluorometer as the same method with adsorption experiment. 

The effect of adsorbed concentration in sponge and pH (7.4, 4.0 and 2.0) of solution 

to %desorption have been investigated.  

 

% 𝐷𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = ⌊
𝑐𝑜𝑛𝑐.𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒

𝐹𝐼𝑇𝐶 𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 𝐵𝑆𝐴 𝑎𝑑𝑠𝑜𝑟𝑏 𝑖𝑛 𝑠𝑝𝑜𝑛𝑔𝑒
⌋ 𝑥 100…….....(3) 

 

III.6.3 Results  

III.6.3.1 Preparation of FITC-BSA 

 A typical UV-Vis spectrum of FITC in PBS is shown in Figure 2. For 

determined the correction factor of FITC, the maximum peak of FITC at about 494 nm 

and 280 nm which is absorption wavelength of BSA protein. So, the correction factor 

for calculate value of FITC-BSA by eliminate amount of absorbance which cause by 

dye is 0.12014/ 0.34737 = 0.345. Protein concentration and ratio of labeling were 

2.965x10
-5

 (eq.1) molar and 4.025 (eq.2) respectively. 

 

 

Figure 2. Typical UV-Vis spectrum of FITC in PBS. 
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III.6.3.2 Absorption  

 Figure 3 show the measure condition of spectrofluorometer (up) and the 

calibration curve of FITC-BSA (down) which have R
2
=0.9916.   

 

 

 

 

 

Figure 3. Typical UV-Vis spectrum of FITC in PBS. 

 

y = 38.31000x + 5.39000 
R² = 0.99116 

0

10

20

30

40

50

0 0.3 0.6 0.9 1.2

In
te

n
si

ty
 

Concentration (mg/ml) 



77 
 

III.6.3.2.1 Effect of concentration 

 Figure 4 show that when concentration of solution increased, the sponge can 

absorbed amount of FITC-BSA increased until reach the equilibrium around 30 and 12 

mg/ g of sponge for GlcNAc and GTA crosslinking group respectively. When compared 

between gelatin sponge and gelatin/ chitosan sponge in each GTA and GlcNAc 

crosslinked (composition and preparation sponge were showed in chapter 5), both 

composite didn’t shown too much different in adsorption amount.  

 

 

  

Figure 4. The effect of FITC-BSA’s concentration to adsorption amount of sponge. 
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Figure 5. The swelling ratio of sponge after adsorption test (up) and photo of swelling 

sponge (down); A) gelatin/ GTA 48hrs., B) gelatin/ chitosan/ GTA 48hrs., C) gelatin/ 

GlcNAc/ heat treatment 100C x 24 hrs. and D) gelatin/ chitosan/ GlcNAc/ heat 

treatment 100C x 24 hrs. 

 

Figure 5 shown the swelling ratio of sponge after adsorption test and photo of swelling 

sponge, GTA crosslinking group sponge shown high swelling ratio than GlcNAc group 

for 2 times. This may indicates that GlcNAc crosslinking in these sponge effects to 

more strong structure and reduced chain flexibility in the sponge. Langmuir and 

Freundlich equation usually used as model for describe the adsorption system. In this 

research, the Langmuir adsorption isotherm model was the assumption that the 
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adsorption behavior occur on a surface by monolayer adsorb. Hanes-Woolf plot is 

commonly used by several researches because of the minimized deviation from the 

fitted equation resulting in the best error distribution [20].  

 

Langmuir’s Hanes-Woolf plot equation: 

 

𝐶𝑒

𝑞𝑒
=

1

𝐾𝐿𝑞𝑚
+

𝐶𝑒

𝑞𝑚
…………....(4) 

 

where qe (mg/g) is the adsorption amount of adsorbent at equilibrium,  

qm (mg/g) is the maximum adsorption amount of FITC-BSA on gelatin sponge, 

Ce (mg/ml) is the equilibrium concentration of adsorbate in solution, 

and KL (ml/mg) is the equilibrium adsorption constant. 

 

Figure 6 shows the straight line obtained plotting Ce/qe versus Ce from the experiment 

data follow Langmuir’s Hanes-Woolf plot equation. KL and qm can calculated from 

slope of plot; value of each sponge are given in Table 2. Experiment data were good 

fitting with isotherm especially in GlcNAc crosslinked sponge due to R
2
  0.99 in both 

sponge. The maximum adsorption capacity (qm) for gelatin and gelatin/ chitosan were 

32.679 and 27.932 mg/ g respectively. The equilibrium adsorption constant (KL) for 

gelatin and gelatin/ chitosan were 5.773 and 9.675 ml/ mg respectively. For GTA 

crosslinked sponge, although the plots of Ce/ qe vs. Ce were straight lines but the values 

of the Langmuir constant were negative (Figure 6 and Table 2). The negative value 

indicates to Langmuir model did not give a good fit to the sorption process [26]. 

However, from GTA sponge adsorption, Langmuir model gave the highest R
2
 than the 

others model. And from observed and data, can conclude that GlcNAc crosslinked 

group shown the better adsorption efficiency and more favorable than GTA which can 

confirmed from spectrofluorescein microscope in Figure 7. After adsorption experiment, 

wash and freeze-dried sponge to compare the surface morphology at the same initial 

concentration of adsorption (0.3 mg/ml). From Figure 7, the amount of FITC that occur 

on GlcNAc crosslinked sponge were higher than GTA group especially on gelatin/ 

chitosan/ GlcNAc/ heat 100C 24hrs which highest adsorbed amount.  
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Figure 6. Linearized Langmuir isotherm (eq.4) for FITC-BSA at 25C. 

 

 

Table 2. Isotherm parameters from adsorption FITC-BSA by sponge 

 

sample Gel/ GTA 48h Gel/ CTS/ GTA48h 
Gel/ GlcNAc/ 

heat 100C24h 

Gel/ CTS/ GlcNAc/ 

heat 100C24h 

linear eq. y= 0.2051x-0.0781 y= 0.1022x-0.0042 y= 0.0306x+0.0053 y=0.0358x+0.0037 

R
2
 0.8348 0.9509 0.9922 0.9953 

qm (mg/g) 4.875 9.784 32.679 27.932 

KL (ml/mg) -2.626 -24.333 5.773 9.675 
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Figure 7. Fluorescein microscope image of FITC-BSA(A), gelatin/ GTA 48h (B), 

gelatin/ chitosan/ GTA 48h (C), gelatin/ GlcNAc/ heat 100C 24h (D) and gelatin/ 

chitosan/ GlcNAc/ heat 100C 24h (E); scale bar represent 200 m. 

 

III.6.3.2.2 Effect of temperature 

 FITC-BSA adsorption on sponge was also studies at different temperature of 10, 

25, 37 50 and 70C, an under the suitable condition of pH 7.4 and initial concentration 

of FITC-BSA is 1.8 mg/ml in each case. The effect of temperature to adsorption 

behavior of FITC-BSA on sponge was shown in Figure 8, each sponge adsorbed 

amount decrease when temperature increased especially at 70C. GTA crosslinked 

sponge didn’t shown the adsorption reaction, It’s may come from at 70C, sponge 

A 

B C 

D E 

D 



82 
 

dissolved to the solution (Figure 9) results to high % weight loss up to 70% when 

compare with GlcNAc crosslinked sponge which have % weight loss less than 10%. For 

GlcNAc group, gelatin shown a little lower adsorption amount than gelatin/ chitosan 

sponge. 

 

Figure 8. The effect of temperature to adsorption amount of FITC-BSA on gelatin 

sponge. 

 

Figure 9. % weight loss of sponge after adsorption test. 
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From the experiment results, thermodynamic parameter can calculate by using the 

follow relation [21-22]. 

 

𝑙𝑛𝐾𝑑 =
∆𝑆𝑜

𝑅
−

∆𝐻𝑜

𝑅𝑇
...………….(5) 

 

where 

𝐾𝑑 =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐹𝐼𝑇𝐶−𝐵𝑆𝐴 𝑖𝑛 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐹𝐼𝑇𝐶−𝐵𝑆𝐴 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 𝑥 

𝑉

𝑚
   (ml/ g) .................(6) 

 

V is the volume of the solution (ml) and m is the weight of the sponge (g). 

S, H, R and T were entropy (J/ mol.K), enthalpy (KJ/ mol), gas constant (8.314 J/ 

mol.K) and temperature (K), respectively. H and S can obtained from slope and Y-

intercept of plots between lnKd and 1/T (Figure 10). Gibbs free energy (G) was 

calculated by using the well-known equation:  

 

    G = H - TS…………………(7) 

 

The thermodynamic parameter which calculated from experiment data were collected in 

Table 3. The negative values of G of each sponge under all temperature conditions 

indicate the spontaneous nature of adsorption reaction. For each sponge except gelatin/ 

chitosan/ GlcNac/ heat 100C 24h, H and S were negative values, refer to 

exothermic reaction and at low temperatures make the reaction more favorable. gelatin/ 

chitosan/ GlcNac/ heat 100C 24h sponge shown the value of H in negative and S in 

positive value, indicated the exothermic reaction whose entropy increases will be 

spontaneous at all temperatures. 
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Figure 10. Effect of temperature on the thermodynamic behavior of adsorption of 

FITC-BSA on gelatin sponge. 

 

Table 3. Thermodynamic parameter for adsorption FITC-BSA on gelatin sponge.  

sample Gel/ GTA 48h 
Gel/ CTS/ GTA 

48h 

Gel/ GlcNAc/ heat 

100C 24h 

Gel/ CTS/ GlcNAc/ 

heat 100C 24h 

linear eq. y = 1821.5x - 4.2766 y = 647.7x-0.0866 y = 1115.2x - 0.7771 y = 655.67x+0.8334 

R² 0.8433 0.8730 0.8207 0.9513 

S (J/molK) -35.55 -0.72 -6.46 6.93 

H (kJ/mol) -15.144 -5.385 -9.272 -5.451 

G (kJ/mol)     

283K (10°C) -5.081 -5.181 -7.443 -7.412 

298K (25°C) -4.548 -5.170 -7.346 -7.516 

310K (37°C) -4.121 -5.161 -7.269 -7.599 

323K (50°C) -3.659 -5.152 -7.185 -7.689 

343K (70°C) -2.948 -5.138 -7.056 -7.828 

 

III.6.3.3 Desorption 

 According to adsorption experiment, the results clear that sponge which 

crosslinked by GlcNAc have better adsorption efficiency than GTA crosslinked. So in 

the desorption experiment, We choose only GlcNAc crosslinked sponge for study about 

desorption behavior of sponge. 
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III.6.3.3.1 Effect of concentration  

 Figure 11 showed the results from desorption FITC-BSA in PBS from 

spectrofluorometer at the same wavelength with adsorption test. Results shown the 

initial rate of FITC-BSA release from composite is rapid from 0 h to 6 h, and same 

release remains at a steady state up to 12 h. The high adsorbed amount of FITC-BSA on 

sponge results to high % desorption (in PBS at 37C), around 25% from 0.3 mg/ ml 

(0.5 mg from adsorbed amount 2 mg) and 55% from 3.5 mg/ml (1.5 mg from 

adsorbed amount 3 mg adsorbed concentration in sponge. Gel/ chitosan have just a few 

higher %desorption than Gel sponge. 

 

 

Figure 11. The effect of FITC-BSA at different concentration to % desorption of 

gelatin sponge in PBS at 37 C. 

 

III.6.3.3.2 Effect of pH 

 Figure 12 shown the results of pH to % desorption FITC-BSA in PBS. With the 

same adsorbed amount at 1.6 mg/ml, sponge were separated to test desorption in 

different buffer pH solution (2.0, 4.0 and 7.4) at 37C, after 12 h sampling the sample 

and measured by using a spectrofluorometer. Results shown % desorption decrease 
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follow by decrease pH 7.4, 4.0 and 2.0 of buffer solution respectively, by gelatin and 

gelatin/ chitosan sponge shown the same trend of data. Figure 13 was the example of 

fluorescein microscopy image after desorption of gelatin/ chitosan sponge, Results can 

confirm the surface morphology of sponge that remained amount of FITC-BSA 

increased at lower pH of desorption solution. 

 

Figure 12. The effect of pH to % desorption of FITC-BSA on gelatin sponge in PBS at 

37 C. 

 

 

 

Figure 13. Fluorescein microscope image after desorption at different pH of gelatin/ 

chitosan/ sponge; pH 7.4(A), pH 4.0(B) and pH 2.0(C); scale bar represent 200 m. 

 

III.6.4 Discussion 

 The focus of this study was to understand the protein adsorption and desorption 

mechanism of sponge which have gelatin as a base material with GlcNAc cross-linked. 

The reason for added chitosan in the scaffold was to increase interaction between NH2
+
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in gelatin and chitosan and CHO
-
 of GlcNAc. From all of the result shown the slightly 

different between gelatin sponge and gelatin/ chitosan sponge, might be came from the 

amount of chitosan which add to scaffold just only 0.8% of gelatin mass. So, this’s may 

effect to physical property such as tensile or compression property [21] of sponge but 

slightly effect to protein adsorption and desorption which controlled by hydrophobic 

interaction, hydrogen bonding, and electrostatic interaction, especially the 

hydrophilicity and surface charge of materials [22-23].  

 

III.6.5 Conclusions 

 The gelatin/ chitosan composite sponges were prepared by using GlcNAc and 

GTA as cross-linker into the form of a sponge by freeze dried. The present study 

focuses on adsorption and desorption of FITC-BSA as a protein model on sponge. 

Adsorption of FITC-BSA on sponge were found to increased adsorbed amount with 

increased concentration on FITC-BSA in solution until reach the equilibrium around 30 

mg/g (for this studies). Langmuir isotherm model was fitted with the experiment data 

with R
2
  0.99 for GlcNAc group. Thermodynamic parameter were calculated, results 

indicated the exothermic adsorption reaction with spontaneous nature. Adsorption 

reaction was effective in every test temperature for gelatin/ chitosan/ GlcNAc/ heat 

treatment 100C 24hrs. Desorption behavior which evaluated only GlcNAc crosslinked 

sponge by vary concentration and pH of FITC-BSA solution, the results shown the high 

adsorbed amount of FITC-BSA on sponge effect to high desorbed amount up to and 

55% from 3.5 mg/ml adsorbed concentration (around 1.5 mg from adsorb amount 3 mg) 

in sponge. Sponge were released FITC-BSA at pH 7.4 more rapidly than low pH. The 

association might be influenced by net charge of protein and participated between 

sponge and FITC-BSA. However, gelatin and gelatin/ chitosan sponge shown the same 

trend of results.  
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Chapter 7 

 

In vivo and In vitro test of chitosan-gelatin based sponge 

 

III.7.1 Introduction 

 Chitosan (CTS) is derived from chitin, natural polysaccharide that can found in 

animal which has fun-gal cell walls such as shell of crustaceans. CTS have been studied 

as biomedical materials due to biocompatible, biodegradable, nontoxic, anti-microbial 

and hydrating agents. CTS is easily processed into gels [1], membranes [2-6], 

nanofibers [7-8], beads [9], microparticles [10], nanoparticles [11], scaffolds [12-13] 

and sponges [14-15] forms. Gelatin (Gel) is also a biocompatible protein because it 

shows low antigenicity and very high bioabsorption ability when it is applied in the 

human or animal body. The superior property of gelatin aqueous solution is the 

solution-gelation transition state based on heat reversibility [16-17]. So many 

biomedical applications of the membranes between CTS and Gel have been reported 

[18]. We have already reported the chitin/ Gel and CTS/ Gel membranes, which were 

successfully prepared for tissue-engineering application due to its biodegradability and 

biocompatibility [19-20]. Cell adhesion studies of both membranes were carried out 

using human MG-63 osteoblast-like cells. The cells incubated had attached and 

completely covered the membrane. Thus, these membranes were bioactive and capable 

of forming cell adhesion. In addition, the preparation of CTS/ Gel membrane with N-

acetyl-D-(+)-glucosamine (GlcNAc) according to Maillard reaction have been reported 

[21-22]. The stress and elongation of chitin/ Gel membrane cross-linked with GlcNAc 

showed higher than those without GlcNAc. It is due to the cross-linking effect of 

GlcNAc by the Maillard reaction. Furthermore, this membrane showed excellent growth 

of NIH/ 3T3 fibroblast cell [23]. Due to the excellent proliferation rate of cells on the 

membrane, the membrane could be applied as a skin tissue regeneration template [24]. 

      Fibroblast Growth Factor-2 (FGF2) stimulates cell proliferation, migration, and 

differentiation associated with wound healing [24]. FGF2 also control proliferation of 

osteogenic cells, such as osteoblasts and bone marrow stromal cells, resulting in 

augmentation of bone [25-28] and regeneration of periodontal [29]. Based on in vivo 

test, evaluated of  multiwall defects in periodontitis patients have been done [30]. Thus, 
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preparation of Gel/ CTS scaffold in combination with FGF2 might accelerate bone 

tissue healing. However, the relation of Gel/ CTS scaffold and FGF2 use has not yet 

been investigated. 

 Therefore, the aim of the present study is to evaluate cross-linking effect of Gel/ 

CTS system using GlcNAc and Glutaraldehyde (GTA). In addition, the effect of 

implantation of FGF2 was also evaluated in vitro and in vivo. 

 

III.7.2 Experimental 

III.7.2.1 Materials and Preparation of Sponge 

 The composite sponge was prepared by dissolving Gel (PGS 250-WIA was 

purchased from KOEI CHEMICAL), CTS (FM-80 was received from Koyo Chemical 

Co. Ltd.) in acetic acid and GlcNAc (purchased from Wako Chemical Co.) in the water. 

The composition of solution is shown in Table 1. The mixture was covered and put in 

the water bath at 50±2C for 10 h to remove entrapped air and obtain homogeneous 

solution. After 10 h, solution was cooled down at room temperature and was freeze-

dried to obtain the sponge. After that, the sponges were subject to two different cross-

linking treatments. First, the sponge was cross-linked with GTA (purchased from Wako 

Chemical Co.) for 48 h, in which GTA vapor is filled in the desiccator. After the 

reaction, the sponge was rinsed with methanol 30 min for 3 times. Another cross-linking 

was performed using GlcNAc. In this case, the sponge was heat treated at 100C for 24 

h in the oven.  

 

Table 1. The preparation of chitosan/ gelatin. (* In relation to the gelatin mass) 

Condition Gel Gel/ CTS 
Gel/ 

GlcNAc 

Gel/ CTS/ 

GlcNAc 
GTA vapor cross-linking O O X X 

Heat 100C  24 h X X O O 

CTS  0.8%* X O X O 

GlcNAc 5%* X X O O 
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 III.7.2.2 In Vitro (cell attachment) 

 In order to evaluate the cytocompatibility, Gel/ CTS sponge (size 8 x 8 x 6 mm) 

was seeded with 1  10
4
 mouse osteoblastic MC3T3-E1 cells and cultured in humidified 

5% CO2 at 37C, using MEM medium (alpha-GlutaMAX-I, Life Technologies, Grand 

Island, NY, USA) supplemented with 10% fetal bovine serum (FBS, Qualified, Life 

Technologies) and 1% antibiotics (Pen Strep, Life Technologies). After 24 h cultivation, 

sponge was fixed in 2.5% GTA in 0.1 M sodium cacodylate buffer (pH 7.4) for 30 min, 

rinsed in cacodylate buffer solution and dehydrated in increasing on concentrations of 

ethanol. Following supercritical drying, sample was analyzed by a scanning electron 

microscope (SEM, S-4000, Hitachi, Tokyo, Japan) at an accelerating voltage of 10kV 

after coating with a thin layer of Pt-PD. 

 

III.7.2.3 In Vivo  

III.7.2.3.1 Preparation of FGF2 loaded sponge 

 FGF2 (Fiblast spray 500, Kaken Pharmaceutical, Tokyo, Japan) was diluted with 

distilled water (Otsuka distilled water, Otsuka Pharmaceutical, Tokyo, Japan) to 

produce stock solution of 0.5 µg/ µl. In the FGF2-loading groups (Gel/ GlcNAc and 

Gel/ CTS/ GlcNAc), each scaffold (size 6  6  3 mm) received 100 µL FGF2 solution 

(loading dose; 50 µg) under vacuum. Without loaded FGF2, sponge was immersed into 

distilled water alone. 

 

III.7.2.3.2 Surgical procedure  

III.7.2.3.2.1 Rat subcutaneous 

 The experimental protocol followed the institutional animal use and care 

regulations of Hokkaido University (Animal Research Committee of Hokkaido 

University, Approval No. 13-76). Twelve 10-week-old male Wistar rats weighing from 

190 to 210 g were given general anesthesia by intraperitoneal injections of 0.6 ml/ kg 

sodium pentobarbital (Somnopenthyl, Kyoritsu Seiyaku, Tokyo, Japan), as well as a 

local injection of 2% lidocaine hydrochloride with 1:80,000 epinephrine (Xylocaine 

Cartridge for Dental Use, Dentsply-Sankin K.K. Tokyo, Japan). After a skin incision 

was made, four types of sponges (Gel/ GTA, Gel/ CTS/ GTA, Gel/ GlcNAc and Gel/ 

CTS/ GlcNAc) were implanted into the subcutaneous tissue of the back of rats. Skin 
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flaps were sutured (Softretch 4-0, GC, Tokyo, Japan) and tetracycline hydrochloride 

ointment (Achromycin Ointment, POLA Pharma, Tokyo, Japan) was applied to the 

wound. Ten weeks postsurgery, the rats were euthanized using an overdose of sodium 

pentobarbital. Implants were excised with surrounding tissues, fixed in 10% buffered 

formalin and embedded in paraffin according to standard procedures. Six micrometer-

thick sections were prepared and stained with hematoxylin and eosin (HE). Sectional 

observation of stained sample was measured using light microscopy. 

 

III.7.2.3.2.2 Rat bone forming  

 The experimental protocol followed the institutional animal use and care 

regulations of Hokkaido University (Animal Research Committee of Hokkaido 

University, Approval No. 10-42). Twelve Wistar rats were used. Following a skin 

incision, a flap was made in the scalp. Decortication of a 4 mm
2
 area was performed in 

front of the coronal suture in the cranial bone using a rotating round bur under water 

irrigation. Subsequently, one of two types of sponges (FGF2/ Gel/ GlcNAc and FGF2/ 

Gel/ CTS/ GlcNAc) of 8 x 8 x 6 mm was placed on the cranial bone with decortication. 

Scaffolds were loaded with FGF2 (50 µg). As a control, no implantation was performed. 

Skin flaps were sutured and tetracycline hydrochloride ointment (Achromycin Ointment, 

POLA Pharma, Tokyo, Japan) was applied to the wound. Rats were euthanized 10 days 

after surgery using an overdose of sodium pentobarbital and specimens were collected 

from the wound. Six µm sections located every 300 µm, including the cranial bone and 

surrounding soft tissue, were prepared. Sections were stained with HE and examined 

using light microscopy. The newly formed bone area was measured in each stained 

section collected 10 days post-surgery using software package (Image J 1.41, National 

Institute of Health, Bethesda, MD, USA). All statistical procedures were performed 

using a software package (SPSS Japan, DR. SPSS 11.0). 

 

III.7.3 Results and Discussion 

III.7.3.1 In Vitro (cell attachment) 

 For a material to be used as an implant within the body, it is necessary to satisfy 

biocompatibility assessment. Culturing cells directly on the surface of composites may 

also indicate synergistic interaction of cells with the scaffold. Figure 1 shows cell 
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attachment experimental results for Gel/ GTA and Gel/ CTS/ GlcNAc systems using 

osteoblastic MC3T3-E1 cell line. The interaction between sponge surface and the cells 

has been visible. In addition, cell spreading with cell process elongation was indicated, 

the osteoblastic MC3T3-E1 cell becomes flat and its plasma membrane spreads over the 

scaffold. Facilitating cellular adhesion, growth and differentiation onto a surface can aid 

in wound healing and tissue growth. In comparison the results with Chitin and Chitin/ 

PBS sponge, SEM image depicting the human dermal fibroblasts (HDF) attachment on 

the prepared scaffolds, HDF attachment on the chitin scaffold showed clumping or cell 

aggregations (Figure 7A, D). Compared to chitin, chitin/ PBS scaffold showed better 

cell attachment (Figure 7B, E). More uniform spreading was evident in the blend. 

Although cell type which studied are different in the gelatin and chitin system sponge, 

but the results indicating that both Gel based sponge with GTA or GlcNAc crosslinked 

and chitin base sponge possess excellent cyto-compatibility 

 

 

Figure 1. SEM micrograph of cell seeding in cellular affinity; (a) Gel/ GTA, (b) Gel/ 

CTS/ GlcNAc, (c) Chitin and (d) Chitin/ PBS. 



96 
 

III.7.3.2 In Vivo  

 Biocompatibility of gelatin based sponges were evaluated by two different in 

vivo test.  

 

III.7.3.2.1 Rat subcutaneous  

 Sponges were implanted into the subcutaneous tissue of the back of Wistar rats. 

FGF2 loaded sponges were also implanted. Histological results after 10 days 

implantation are shown in Figure 2. All of the sponges showed ingrowth of fibroblastic 

cells and extent of ingrowth was in the following order; GTA cross-linked system 

(a)(d) < GlcNAc cross-linked system (e)(h) < FGF2 loaded GlcNAc cross-linked 

system (i)(l). In the case of GTA cross-linked system (a)(d), the permeation of 

inflammatory cells (lymphocytes) is accepted along the implanted sponge. Thus, GTA 

system showed low biocompatibility. In contrast, GlcNAc system (e)(h) showed 

excellent biocompatibility because permeation of inflammatory cells was rarely 

observed. In addition, phagocytosis by macrophage was also observed in GlcNAc 

system. In the case of FGF2 loaded system (i)(l), neutrophil was observed at all. In 

addition, both the ingrowth of fibroblast cell and phagocytosis by macrophage were 

prominently stimulated. Therefore, GlcNAc cross-linked system seems to be a favorable 

material for loading several growth factors.  

 The present Gel based sponges containing CTS (g)(h)(k)(l) were cross-linked 

with GlcNAc. Since Gel contained amino acid with amino group as side chain in some 

extent (1020%), Gel reacts with several reactive species produced during the complex 

reaction triggered with the reaction of carbonyl group of GlcNAc and amino group of 

Gel, during the cross-linking reaction at 100C. CTS also reacts with GlcNAc on the 

same way with Gel. Overall reactions are called Millard reaction and forms melanoidins 

which is a complex mixtures of polymer compounds [21-22]. It is well known that 

biomaterials containing CTS brings about an inflammatory reaction, probably existence 

of amino group participates. Low inflammatory action in the present systems that 

contains CTS (g)(h)(k)(l) may be attributed with modification of CTS by Millard 

reaction.  
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        (g)                                                     (h) 

   

        (i)                                                       (j) 

  

        (k)                (l) 

Figure 2. Histological appearance of subcutaneous tissue of back of rat implanted with 

several sponge after 10 days. (a), (b); Gel/ GTA, (c), (d); Gel/ CTS/ GTA, (e), (f) Gel/ 

GlcNAc, (g), (h); Gel/ CTS/ GlcNAc, (i), (j); FGF2/ Gel/ GlcNAc, (k), (l); FGF2/Gel/ 

CTS/GlcNAc. Arrow in (b) and (j) indicate to Lymphocyte and Macrophage 

respectively. 
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III.7.3.2.2 Rat bone forming test 

 In order to examine the bone forming activity of the Gel based sponges, two 

different types of sponges loaded with FGF2 were applied for head of Wistar rats. 

Histological images for FGF2/ Gel/ GlcNAc are shown in Figure 3. Implantation of 

FGF2/ Gel/ GlcNAc scaffold frequently promoted bone augmentation; in which newly 

formed bone are osteoblastic cells, osteocyto-like cells and bone marrow. Such 

ingrowth of bone cells were significant and residual scaffold was degraded by 

phagocytosis with macrophage. These findings are the same level as a collagen sponge 

[27]. However, inflammatory response was exhibited after implantation of FGF2/ Gel/ 

CTS/ GlcNAc scaffold (Figure 4). Although the scaffold was degraded and replaced by 

connective tissue, newly formed bone was slightly observed. 

 

Figure 3. Histological appearance of bone tissue of head of Wistar rat implanted with 

FGF2/ Gel/ GlcNAc sponge after 10 days. (NB; new bone, S; scaffold, PB; preexisting 

bone) 
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Figure 4. Histological appearance of bone tissue of head of Wistar rat implanted with 

FGF2/ Gel/ CTS/ GlcNAc sponge after 10 days. (NB; new bone, S; scaffold)  

 

 The newly formed bone area was calculated from the histomorphometric 

measurements in each stained section collected 10 days post-surgery Wistar rats. The 

result is shown in Figure 5. The means and standard deviations were calculated for each 

group. Bone area of the FGF2/ Gel/ GlcNAc scaffold was significantly greater than that 

of FGF2/ Gel/ CTS/ GlcNAc and control. The difference was statistically significant 

based on the statistical analysis using the Scheffé test. Therefore, the present Gel/ 

GlcNAc system with FGF2 is bioactive and suitable for tissue engineering application, 

especially in bone reproductive capability. 
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Figure 5. Histological appearance of bone tissue of head of Wistar rat implanted with 

FGF2/ Gel/ GlcNAc and FGF2/ Gel/ CTS/ GlcNAc sponge after 10 days. 

 

III.7.4 Conclusions 

 The Gel/ CTS composite were prepared by using GlcNAc and GTA as cross-

linker into the form of a sponge by freeze drying. Cell seeding investigation using 

mouse osteoblastic MC3T3-E1 cells confirmed that the cells could well attached to the 

based sponge and the elongation was observed in the GlcNAc system better than GTA 

system. In comparison of cell attachment by the human dermal fibroblasts (HDF) on 

Chitin and Chitin/ PBS sponge, the results found that HDF attachment on the chitin/ 

PBS scaffold better than chitin alone sponge. Although cell type which studied are 

different in the gelatin and chitin system sponge, but the results indicating that both Gel 

based sponge and chitin base sponge possess excellent cyto-compatibility. In vivo test 

with the rat subcutaneous model indicated that extent of ingrowth and biocompatibility 

was excellent in GlcNAc system than those in GTA system. The loading of FGF2 

against to the Gel based sponge cross-linked with GlcNAc system stimulated ingrowth 

of cells. In addition, excellent bone forming ability was also obtained using GlcNAc 

system sponge loaded with FGF2. Thus, the present Gel based GlcNAc system is 

bioactive and suitable for tissue-engineering application, especially in bone reproductive 

capability.  
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 This thesis summarizes the results of preparation gelatin in various forms 

consisting of micro-fiber, nano-fiber and sponge. Characteristic and properties of each 

form have been studied. 

  

In section I, the effect of various crosslinking agents to gelatin fiber was 

described. 

 In chapter 1, produced gelatin fibers have average diameter in range of 50±5 

microns with every crosslinked agent. The average tensile stress of fiber without 

crosslink is 120 MPa. Each crosslinker which applied to gelatin fibers results to 

improved mechanical property indicated from tensile stress of fibers were increased. 

GlcNAc shown good results in tensile stress and water resistance than the others sugar 

especially when applied heat treatment at 120C for 24 h. Di-epoxy was add to gelatin 

solution before spin 3,4 and 5% of gelatin mass, results shown that stress of fiber were 

increased follow by amount of di-epoxy. But when apply heat treatment to fiber, stress 

of fibers remained the same or even lower, probably due to thermal decomposition of 

the gelatin chain. GTA on the crosslinked gelatin fiber for 1, 2 and 3 days by vapor 

crosslinked, results shown that stress of fiber were increased follow by increased time 

of crosslinked. And when apply heat treatment on the fiber stress of fibers was 

improved. The comparison of each crosslinker by water resistance, GTA and GlcNAc 

crosslinked showed the good water resistance ability and less swelling up to 90 days.  

 In chapter 2, the effect of GTA vapor crosslinked to gelatin micro-fiber was 

studied. Mechanical property was evaluated in order to find the optimum crosslinked 

time, the result was found that stress of fiber reach the stable at 7 days. The toxicity 

induced by GTA cross-linking was could be controlled by reducing it with NaBH4. In 

all, the combination of results indicates that the NaBH4 is effective in reduction of the 

gelatin fiber which crosslinked by GTA.  

  

In section II, electrospiining conditions and effect of difference crosslinking 

agent to gelatin nano-fiber was described to apply the materials as biomaterial 

application. 

 In chapter 3, diameter of fibers, viscosity and flow rate of solution were 

increased depending on the concentration of gelatin. Non-woven fabrics which were 
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spun with 25% gelatin concentration only showed a fiber diameter in the nanoscale. In 

order to improve the properties of the non-woven fabrics, they were either cross-linked 

with GTA vapor after spinning or by the addition of GlcNAc in the gelatin solution 

prior to spinning and further cross-linked by applying heat. The developed non-woven 

fabrics were characterized using scanning electron microscopy (SEM), rheometer, FT-

IR, TGA and mechanical tensile testing. In terms of mechanical property, cross-linking 

of non-woven fabrics by GTA vapor showed improved properties when compared to 

without cross-linking as well as with GlcNAc cross-linking. The swelling and water 

uptake ability showed that the non-woven fabrics with GTA cross-linking had no 

morphological changes. TGA thermogram confirmed no phase change in the composite 

structure.  

 In chapter 4, the basic setting to create random fiber (nonaxially) and aligned 

fiber (uniaxially) had been found. Rotating a drum collector at very high rotating speed, 

relatively poor alignment of spun fiber. Electrospinning with a rotating drum collector 

consisting of parallel electric bar separated by gap was effective to prepare aligned fiber. 

The electrospinning conditions that gave the best alignment of are 4000 rpm and 

distance between parallel electric bar 3 cm and applied electric voltage 23 kV. The 

development of non-woven gelatin fabric to tubular structure is possible such as 

combine with the others polymer, expected to use as artificial blood vessels in the future. 

  

In section III, preparation and characterization of sponge with difference 

crosslinking agent have been study. Physical, chemical and biological properties were 

evaluated to use as basic information of gelatin sponge and develop in biomaterials such 

as bone-tissue engineering. 

 In chapter 5, cross-linking effect of chitosan/ gelatin sponge was evaluated using 

GlcNAc and GTA as crosslinker. The composite material was made into the form of a 

sponge by freeze dried. The results from SEM observation shown that the 

interconnected porosity of each composite sponge was well demonstrated. 

Thermogravimetric indicated that there is no phase change in the composite structures 

all of sponge. Water uptake, PBS swelling ratio and degradation rate of composite 

sponge which prepared with GlcNAc system were higher, due to higher porosity of the 

composite sponges. The comparison of gelatin composite sponge with chitin/ PBS 
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sponge, chitin/ PBS showed the higher swelling ratio due to high porosity which can 

observe from SEM image. This result may come from the different solvent and 

preparation method. However the pore size of both sponge systems was in the micro 

scale. In the future, the focus on comparison of chitin and gelatin system would be 

expectation. 

 

In chapter 6, adsorption and desorption behavior of FITC-BSA on gelatin/ chitosan 

sponge which crosslinked with GlcNAc and GTA were evaluated. Adsorption of FITC-

BSA on sponge were found to increased adsorbed amount with increased concentration 

on FITC-BSA in solution until reach the equilibrium around 30 mg/ g (for this studies). 

Langmuir isotherm model was fitted with the experiment data with R
2
  0.99 for 

GlcNAc group. Thermodynamic parameter were calculated, results indicated the 

exothermic adsorption reaction with spontaneous nature. Adsorption reaction was 

effective in every test temperature for gelatin/ chitosan/ GlcNAc/ heat treatment 100C 

24hrs. Desorption behavior which evaluated only GlcNAc crosslinked sponge by vary 

concentration and pH of FITC-BSA solution, the results shown the high adsorbed 

amount of FITC-BSA on sponge effect to high desorbed amount up to 55% from 3.5 

mg/ ml adsorbed concentration (around 1.5 mg from adsorb amount 3 mg) in sponge. 

Sponge were released FITC-BSA at pH 7.4 more rapidly than low pH. The association 

might be influenced by net charge of protein and participated between sponge and 

FITC-BSA. However, gelatin and gelatin/ chitosan sponge shown the same trend of 

results.                                                                                                                         

 In chapter 7, gelatin/ chitosan composite sponge with GTA and GlcNAc 

crosslinked were explored the possibility of biomaterial application by in vivo and in 

vivo test. Cell seeding investigation using mouse osteoblastic MC3T3-E1 cells 

confirmed that the cells could well attached to the based sponge and the elongation was 

observed in the GlcNAc system better than GTA system. In comparison of cell 

attachment by the human dermal fibroblasts (HDF) on Chitin and Chitin/ PBS sponge, 

the results found that HDF attachment on the chitin/ PBS scaffold better than chitin 

alone sponge. Although cell type which studied are different in the gelatin and chitin 

system sponge, but the results indicating that both Gel based sponge and chitin base 

sponge possess excellent cyto-compatibility. In vivo test with the rat subcutaneous 
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model indicated that extent of ingrowth and biocompatibility was excellent in GlcNAc 

system than those in GTA system. The loading of FGF2 against to the Gel based sponge 

cross-linked with GlcNAc system stimulated ingrowth of cells. In addition, excellent 

bone forming ability was also obtained using GlcNAc system sponge loaded with FGF2. 

Thus, the present gelatin based GlcNAc system is bioactive and suitable for tissue-

engineering application, especially in bone reproductive capability. 
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