Photocatalytic H₂O₂ production from O₂ under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO₄

Kojiro Fuku^{a,*}, Ryosuke Takioka^a, Kazushi Iwamura^b, Masanobu Todoroki^b, Kazuhiro Sayama^c, Naoki Ikenaga^a

^a Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

^b Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

^c Research Center for Photovoltaics (RCPV) and Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

* Corresponding author

E-mail address: k.fuku@kansai-u.ac.jp

TEL: +81-6-6368-0894

FAX: +81-6-6388-8869

Abstract

 H_2O_2 production from O_2 over Pd nanoparticle (NP) co-catalysts-supported BiVO₄ was studied. Several deposition methods and conditions (active metal, co-catalyst loading, solution pH) were investigated for catalyst preparation, and the photo-assisted deposition (PAD) of Pd from an aqueous phosphate buffer solution (pH = 7) was found to be optimal, resulting in small and uniform phosphate ion (PO₄^{3–})-coated Pd NPs being selectively deposited on the reductive surfaces of the BiVO₄. This catalyst exhibited better H₂O₂ production from O_2 in the presence of methanol (CH₃OH) as a hole scavenger under visible light irradiation than that by the catalysts prepared by the other methods and under other PAD conditions. It is surmised that PO_4^{3-} partially coats smaller Pd NPs with a narrow size distribution on the reductive surfaces of the BiVO₄, and that these NPs promote H₂O₂ generation synergistically by catalyzing the two-electron reduction of O₂ while simultaneously inhibiting the four-electron reduction of O₂ and the two-electron reduction of H₂O₂ to H₂O.

Keywords: Photocatalysis; Hydrogen peroxide; Oxygen reduction; Phosphate ion-coated palladium; Bismuth vanadate

1. Introduction

 H_2O_2 , which produces only H_2O and/or O_2 on reacting, has been the subject of considerable research attention as a versatile and clean redox agent for selective organic conversions [1-4], environmental purification, bleaching, sterilization and cleaning [5-8], and energy source in H_2O_2 fuel cells [9-13]. H_2O_2 is generally synthesized by the anthraquinone process [14-15]. However, this process suffers a multitude of serious problems, including its multistage nature and reliance on large amounts of harmful organic solvents and H_2 . Thus, the development of one-step, H_2 -free, aqueous photocatalytic systems to produce H_2O_2 from O_2 [16-26], exploiting inexhaustible light energy, represents a promising strategy to overcome the problems of the anthraquinone process.

In such systems, H_2O_2 is photocatalytically generated by the two-electron reduction of O_2 , as shown in Eq. (1):

$$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2 (E(O_2/H_2O_2) = +0.68 \text{ V vs. RHE}))$$
 (1)

Thus, visible light-responsive photocatalysts capable of driving the O_2 reduction in Eq. (1) are required for the efficient utilization of solar light and thus the realization of economically viable light-driven synthetic processes [18-26]. Encouragingly, several promising examples of materials and systems that produce H₂O₂ effectively from O₂ with H₂O as the electron source (Eqs. 1-3) under visible light or solar light irradiation have been reported [20-26, 33].

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^- (E(O_2/H_2O) = +1.23 \text{ V vs. RHE}))$$
 (2)

$$2(1) + (2): O_2 + 2H_2O \to 2H_2O_2$$
(3)

BiVO4 is widely known as an excellent oxide-type photocatalyst having band

potential capable of achieving the reduction of O_2 and the oxidation of H_2O under a wide spectral range of light energy (~520 nm) [26-30]. Accordingly, authors (Fuku and Sayama) have reported the unprecedented production of H_2O_2 from H_2O on a BiVO₄ photoanode in aqueous hydrogen carbonate by a two-electron oxidation process under simulated solar light irradiation [31-33]. This anodic reaction was accompanied by H_2O_2 or H_2 production from O_2 or H_2O , respectively, on the cathode. However, although BiVO₄ exhibits the unique ability to generate H_2O_2 simultaneously from both O_2 and H_2O under visible light irradiation [33], most previous studies on BiVO₄ photocatalysis have focused on application for H_2 production through water splitting rather than through H_2O_2 production.

Au nanoparticles (NPs) are utilized frequently as a reductive co-catalyst to generate H_2O_2 from O_2 on oxide-type photocatalysts [16,18,26,33]. The combination of an Au NP co-catalyst with a BiVO₄ photocatalyst has also been reported to facilitate H_2O_2 generation from O_2 and H_2O under visible light or simulated solar light irradiation [26]. Thus, the exploitation of reductive co-catalysts represents a promising strategy to realize the excellent reduction potential of BiVO₄ in effective H_2O_2 production through the two-electron reduction of O_2 .

Accordingly, in the present study, we investigated optimum metal NPs as a reductive metal co-catalyst for use with BiVO₄ in H_2O_2 production from O_2 under visible light irradiation (Fig. 1). Photocatalyst composites were prepared by impregnation (IMP), deposition-precipitation (DP)/chemical reduction (CR) (DP-CR), or photo-assisted deposition (PAD) methods. The catalysts were then characterized thoroughly using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron

microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), and their performances in the photocatalytic synthesis of H₂O₂ were evaluated.

2. Experimental

2.1. Chemicals

All reagents were commercially available, of reagent grade, and used without further purification.

2.2. Preparation of metal co-catalysts-supported BiVO₄

2.2.1 BiVO₄ photocatalyst preparation

BiVO₄ powder was prepared according to the existing DP method, with a minor change [29-30]. Typically, a suspension of Bi_2O_3 (10 mmol), V_2O_5 (10 mmol), and aqueous 0.5 M HNO₃ (200 mL) was heated at 333 K for 24 h while stirring. After filtration and washing with H₂O, the resulting powder was dried at 60 °C.

2.2.2 Deposition of metal co-catalysts on BiVO₄

IMP method: BiVO₄ (0.495 g) was added to H₂O (20 mL), and an aqueous solution of the appropriate metal precursor (1.0 wt% (5 mg) in terms of the corresponding zerovalent metal species) was added to the suspension. After the suspension was evaporated at 333 K under vacuum, the obtained powder was dried at 383 K for 1 h and then calcined at 723 K for 2 h. An aqueous solution of HAuCl₄, IrCl₄, RuCl₃, RhCl₃, AgNO₃, H₂PtCl₆, (NH₄)₂[PdCl₄], MnCl₂, NiCl₂, CoCl₂, or CuCl₂ was used as the metal precursor. In addition, 0.1 and 0.5 wt% Pd catalysts were also prepared using the same procedure, except with different concentrations of the aqueous (NH₄)₂[PdCl₄] precursor.

DP-CR method: The deposition of Pd onto the BiVO4 by DP-CR was performed

by reference to the existing literature of DP and CR methods [34-36]. Briefly, BiVO₄ (0.495 g) was added to H₂O (50 mL), and then an aqueous solution of $(NH_4)_2$ [PdCl₄] (1 wt% (5 mg) in terms of Pd⁰) was added to the suspension. The pH of the suspension was adjusted to 11 by the addition of 28% aqueous NH₃, and the suspension was heated to reflux for 2 h while stirring. To reduce the Pd species, an aqueous solution of NaBH₄ was added to the suspension (Pd:NaBH₄ = 1:100 (mol/mol)), and the suspension was heated to reflux for a further 1 h while stirring. After filtration and washing with H₂O, the resulting powder was dried at 60 °C.

PAD method (with and without phosphate): BiVO₄ (0.495 g) was suspended in an aqueous solution (100 mL) containing 10 vol% CH₃OH as a hole scavenger with or without phosphate buffer solution (90 mM) adjusted to pH = 5.1, 7.2, 8.9, or 10.9. Then, an aqueous solution of (NH₄)₂[PdCl₄] (1 wt% (5 mg) in terms of Pd⁰) was added to the suspension. The suspension was photo-irradiated at λ > 300 nm with a 300-W Xe illuminator (ILC Technology, Inc., CERMAX LX-300) while stirring under ambient pressure in an ice bath for 2 h. After filtration and washing with H₂O, the resulting powder was dried at 60 °C. The pH of the phosphate solution was adjusted by changing the amounts of Na₂HPO₄, NaH₂PO₄, and NaOH therein. BiVO₄ catalysts with Pd loadings of 0.01, 0.05, 0.1, and 0.5 wt% were also prepared by the same procedure, except with different concentrations of aqueous (NH₄)₂[PdCl₄]. For comparison, preparation of other BiVO₄ photocatalysts with Pd loadings of 0.1 wt% by the PAD method was also performed by the same procedure, except with substituting aqueous borate, acetate, carbonate, and citrate buffer solutions adjusted to pH = *ca*. 7 for the phosphate solution.

2.3. Characterization

Catalysts were characterized using XRD (SmartLab, Rigaku, Ltd.) with monochromatic Cu-Kα radiation, SEM (S-4800, Hitachi, Ltd.), TEM (JEM-2010, JEOL, Ltd.), and XPS (JPS-9010MX, JEOL, Ltd.) with Mg-Kα radiation.

2.4. H₂O₂ production from O₂ over metal co-catalysts-supported BiVO₄

A prepared photocatalyst sample was suspended in H₂O (45 mL) in a test tube $(\phi 30 \times 200 \text{ mm})$. After the test tube was bubbled with O₂ for 15 min at 200 mL min⁻¹ in an ice bath, CH₃OH (5 mL) as hole scavenger was added to the suspension while O₂ bubbling. The suspension was bubbled with O₂ for further 5 min and sealed with a silicone stopper. The test tube was photo-irradiated in an ice bath for 2 h at $\lambda > 420$ nm using a 300-W Xe illuminator equipped with a cut-off filter (HOYA Corp., L42). The concentration of H₂O₂ generated was measured by colorimetry based on the color change of Fe²⁺ to Fe³⁺ [31-33] using a UV–vis spectrophotometer (PD-3500UV, APEL Co., Ltd.). Briefly, 0.1 mL of 0.1 M FeSO₄ in 0.5 M aqueous H₂SO₄ solution was added to a solution containing 1.0 mL of reaction sample and 0.9 mL of 0.5 M aqueous H₂SO₄ solution. The H₂O₂ concentration was measured by Fe³⁺ colorimetry (305 nm).

3. Results and discussion

3.1. Effects of metal species and co-catalyst preparation method

 H_2O_2 production from O_2 in the presence of CH_3OH as a hole scavenger under visible light ($\lambda > 420$ nm) irradiation using different metal co-catalysts (1 wt%)-supported BiVO₄ prepared using the IMP method is shown in Fig. 2. Almost all the metal-bearing catalysts exhibited higher H_2O_2 generation performances than that of bare BiVO₄ (except for supported Ir and Mn), and the performances increased in the order Ni \Rightarrow Co < Ru < Rh < Ag < Cu \rightleftharpoons Pt << Pd. Pt being known to promotes electrochemical H₂O generation by the four-electron reduction of O₂ and the two-electron reduction of H₂O₂ [37-38], and Cu as base metal species facilitated H₂O₂ production from O₂ well under these reaction conditions. It should also be noted that Pd was by far the most effective co-catalyst for H₂O₂ production from O₂, exhibiting a performance that was *ca.* 9.3 times greater than that of Au, which is a conventional co-catalyst to generate H₂O₂ from O₂. It has also been reported that Au requires a higher overpotential for the electrochemical reduction of O₂ than those of Pt or Pd, and that Pt exhibits higher activity at lower overpotentials in the four-electron reduction of O₂ than that for Pd [37-38]. This results in poorer performances in terms of reactivity and selectivity in H₂O₂ generation *via* the two-electron reduction of O₂ for Au and Pt, respectively. In this study also, the specific improvement of performance by Pd supported on the BiVO₄ photocatalyst might be caused by both a comparatively low overpotential and a high selectivity for the two-electron reduction of O₂.

For the Pd co-catalyst, the effects of the preparation method on performance were also investigated using the conventional methods of IMP and DP-CR as well as the PAD method (Fig. 3). As shown in Fig. 3(A), XRD patterns derived from the monoclinic structure, which exhibits higher photocatalytic activity in H₂O splitting than other BiVO₄ crystal forms [29-30], were observed for bare BiVO₄, and this structure was maintained after the deposition of Pd NPs by IMP and PAD. However, peaks for Bi metal were observed for the catalyst prepared by the DP-CR method, suggesting that some BiVO₄ was reduced to Bi⁰ by the NaBH₄ used as a reducing agent in the chemical reduction. Moreover, no diffraction peaks ascribed to Pd NPs were observed for any of the samples, suggesting that the Pd NPs supported on the BiVO₄ were highly dispersed.

In addition, the BiVO₄ prepared in this study possesses a unique decahedral structure with separate sites (faces) for reduction and oxidation reactions, and it has been demonstrated previously by observing these deposition sites using the photo-deposition method of metals or metal oxides and from a difference in energy levels of {010} and $\{110\}$ facets calculated by DFT that the two facets on the top and bottom (the $\{010\}$ faces) and the eight side facets (the {110} faces) act as reduction and oxidation sites, respectively (Fig. 3(B)(a)) [39]. As seen in the SEM images shown in Fig. 3(B)(b), the IMP method provided Pd NPs with sizes of 20-70 nm, distributed randomly over the entire BiVO₄ surface. In addition, the DP-CR method provided Pd-BiVO₄ having distinctly different patterned indented surface structure over the entire BiVO₄ surface compared with other samples. From the XRD pattern of Fig. 3(A)(c), it indicated that the patterned indented surface structure was formed by composite particles of Pd species and Bi⁰ derived from the BiVO₄ by the chemical reduction. Conversely, the catalysts prepared using the PAD method (without phosphate) showed agglomerations of Pd NPs with sizes of 10–60 nm supported selectively on the reductive surfaces ($\{010\}$ faces) of the BiVO₄ (Fig. 3(B)(d)), indicating that the Pd species were reductively supported by the action of excited electrons generated on the reductive surfaces under light irradiation.

Figure 3(C) shows a comparison of the H_2O_2 production performances achieved using these Pd-BiVO₄ catalysts. Pd-BiVO₄ prepared using the DP-CR method exhibited very poor H_2O_2 production properties, in that the photocatalytic activity was lost due to the reduction of BiVO₄ discussed above or inhibiting H_2O_2 generation over the Pd-BiVO₄ by generating Bi⁰. Interestingly, the Pd-BiVO₄ prepared by the PAD method without aqueous buffer solution exhibited a H_2O_2 production performance *ca*. 2.1 times better than that prepared by the IMP method.

The effects of Pd loading on H_2O_2 generation for catalysts prepared by the IMP and PAD methods were also investigated, as shown in Fig. 4. In both cases, the performance decreased significantly with increasing loading in the range 0.1–1.0 wt%, and the performance of Pd-BiVO₄ prepared using the PAD method without aqueous buffer solution was maximal at *ca*. 340 μ M. From the SEM images of 0.1 and 1.0 wt% Pd-BiVO₄ prepared by the PAD method without aqueous buffer solution (Fig. S1), better dispersed and smaller Pd NPs were observed clearly for a Pd loading of 0.1 wt% than those observed for a Pd loading of 1.0 wt%. The results shown in Figs. 3, 4, and S1 indicate that smaller Pd NPs supported selectively on the reductive surfaces of the BiVO₄ facilitate H₂O₂ production from O₂.

3.2. Effects of PAD conditions

The pH of the solvent employed in PAD significantly affects the size of the resultant NPs supported on the photocatalytic support [40], meaning that smaller Pd NPs can be deposited on the reductive surfaces of BiVO₄ by performing PAD under optimal pH conditions. Accordingly, to improve the H₂O₂ production performance of Pd-BiVO₄ prepared by the PAD method, we focused on optimizing the deposition conditions.

In this study, a phosphate buffer solution was used as a pH adjuster as a means to maintain a fixed pH during PAD. Fig. 5 shows the H₂O₂ production performance from O₂ of 0.1 wt% Pd-BiVO₄ prepared using the PAD method with phosphate solutions adjusted to different pH values ranging from acidic to basic. The performance changed significantly with the pH and the maximum performance was achieved for pH = 7.2, where the maximum accumulation reached *ca*. 600 μ M after only 2 h. This was *ca*. 1.8

times greater than that for 0.1 wt% Pd-BiVO₄ prepared using the PAD method without pH adjustment.

To identify the specific factors responsible for this pH-dependent performance, the average particle sizes (d_{av}) and size distributions of the Pd NPs were obtained from TEM images of the samples prepared at pH = 3.5 (without pH adjustment), 7.2, and 10.9 (Fig. 6). The d_{av} and size distributions of the Pd NPs clearly changed significantly with the pH. The sample prepared at pH = 7.2 presented the lowest d_{av} and narrowest size distribution of Pd NPs of the samples analyzed (Fig. 6(b)). On the other hand, the Pd NPs deposited at pH = 10.9 presented a particularly wide size distribution and the highest d_{av} .

It has been reported that (NH₄)₂[PdCl₄], used in this study as a Pd precursor, undergoes changes in coordination geometry with the changing pH of the solution [41-42]. The Cl⁻ in the [PdCl₄]^{2–} is substituted gradually by OH⁻ on increasing the pH beyond 6 [41], and $[PdCl(H_2O)_3]^+$ and $[PdCl_2(H_2O)_2]$ complexes are formed at pH < 3.8 [42]. Based on these results and those of previous reports, the $[PdCl_x(OH)_{4-x}]^{2-}$ complex formed at pH = 7.2 is better suited to the deposition of highly dispersed, small, narrow size distribution Pd NPs by the PAD method compared with the $[PdCl(H_2O)_3]^+/[PdCl_2(H_2O)_2]$ or $[PdCl(OH)_3]^{2-}/[Pd(OH)_4]^{2-}$ complexes that are expected to form at pH = 3.5 or 10.9, respectively. In addition, these results also indicate that smaller Pd NPs supported on the BiVO₄ improve reductive H₂O₂ production from O₂. It has also been reported that the amount of electrons (*i.e.*, negative charge state) trapped in Au NPs supported on a Si wafer increases proportionately with increasing particle size [43]. This suggests that, in the present study, increasing the particle size of the Pd NPs would lead to better performance for multielectron reduction processes, *i.e.*, the unfavorable four-electron reduction of O_2 to H_2O (the back reaction of Eq. (2)), resulting in a decreasing selectivity for H_2O_2 generation by the two-electron reduction of O_2 . Thus, smaller Pd NPs supported on the reductive surfaces of the BiVO₄ would act as an excellent co-catalyst for H_2O_2 production by the two-electron reduction of O_2 rather than the four-electron reduction of O_2 , resulting in significant different co-catalyst performances of Pd NPs prepared at pH = 7.2 and 10.9 with phosphate.

On the other hand, although Pd NPs prepared at pH = 3.5 without phosphate exhibited a higher abundance rate of smaller NPs (< 10 nm) than that prepared at pH =10.9 with phosphate (Figs. 6(a) and (c)), low H₂O₂ production performance was confirmed equivalent to that on the sample prepared at pH = 10.9 with phosphate possessing a bigger d_{av} and a wider distribution of Pd NPs. These results may indicate that "phosphate" utilized as the pH adjuster in the PAD also facilitates H₂O₂ production intrinsically from O₂.

To fully investigate the effects of phosphate on H_2O_2 production from O_2 (other than those related to its role as a pH adjuster), 0.1 wt% Pd-BiVO₄ catalysts were prepared using PAD at pH = *ca.* 7 from aqueous solutions containing buffer species other than phosphate. As shown in Fig. 7, although a pH of 7 was used for all the depositions, the performance changed significantly depending on the species used in the aqueous buffer solution. In the case of using citrate, citrate ions might be adsorbed strongly onto the Pd NPs, even after PAD, resulting in a decrease in the occurrence of the two-electron O_2 reduction. Indeed, there are many reports of citrate ions acting as a reducing agent and/or aggregation inhibitor in metallic NP preparation by the chemical reduction method [44-45]. Conversely, 0.1 wt% Pd-BiVO₄ prepared using acetate, carbonate, and borate exhibited higher performance than that prepared without the buffer, but their effects were clearly lower than those observed for the phosphate buffer.

The TEM image of 0.1 wt% Pd-BiVO₄ prepared using carbonate (Fig. S2(a)), which exhibited the lowest performance other than that prepared using citrate, revealed that the d_{av} and size distribution for these Pd NPs were similar to those for the NPs prepared using phosphate. These results (Figs. 7 and S2) demonstrate clearly that the phosphate contributes to H₂O₂ production from O₂ through effects other than those as simply a pH buffering agent.

3.3. Mechanism of the effect of phosphate on Pd-BiVO4 performance

To investigate the specific effects of phosphate ions on H₂O₂ production from O₂, Pd(3d) and P(2p) XPS spectra were obtained from Pd-BiVO₄ prepared at pH = 7.2 using phosphate solution (Fig. 8(A) and (B)). A catalyst loading of 1.0 wt% Pd was used for confirming the information of Pd NPs in detail. For comparison, a sample of BiVO₄ photo-irradiated in an ice bath for 2 h at λ > 300 nm using a 300-W Xe illuminator in phosphate solution adjusted to pH = 7.2 without (NH₄)₂[PdCl₄] was also obtained (Fig. 8(C)).

Interestingly, the presence of both Pd and P species on the surface of the 1.0 wt% Pd-BiVO₄ was confirmed. In the Pd($3d_{5/2 \text{ and } 3/2}$) spectra, the 1.0 wt% Pd-BiVO₄ presented two peaks at 337.9 eV and 343.3 eV due to tetravalent Pd oxide (PdO₂) (Fig. 8(A)) [46-47], although the Pd NPs were supported on the reductive surfaces of the BiVO₄ using the PAD method. It has also been known that surface of reduced Pd species is easily oxidized in the presence of O₂ [48-49]. In this study also, surface oxide layer of the PdO₂ might be formed by the O₂, after the Pd species were reductively supported on the

reductive surfaces under light irradiation. In the P($2p_{3/2 \text{ and } 1/2}$) spectra, two peaks at 133.0 eV and 134.3 eV due to phosphate ions (PO₄³⁻) were observed. (Fig. 8(B)) [50-52]. Furthermore, no peaks due to bonds between Pd and P (such as those in Pd-P and Pd-PO) were observed in the Pd(3d) and P(2p) spectra. In addition, no spectrum was confirmed in the XPS measurements of P(2p) on the BiVO₄-irradiated visible light in the same procedure other than using aqueous buffer solutions of phosphate at pH = 7.2 without (NH₄)₂[PdCl₄] as the Pd precursor in the PAD method (Fig. 8(C)). These results suggest that PO₄³⁻ partially coated only on the Pd NPs, not on the BiVO₄, by the PAD method using phosphate (Fig. 8).

It is noted that phosphate is widely known to be an effective stabilizer of H₂O₂ [53]. To confirm the effect of phosphate on H₂O₂ degradation during the reaction, reductive H₂O₂ production from O₂ in an aqueous solution of CH₃OH containing H₂O₂ (200 μ M) was also performed using 0.1 wt% Pd-BiVO₄ prepared at pH = *ca*. 7 using aqueous carbonate or phosphate buffer solutions (Fig. 9). The amount of H₂O₂ generated decreased with the initial addition of H₂O₂ in both cases, suggesting that the H₂O₂ generated was consumed during the reaction between H₂O₂ and the carriers generated by BiVO₄ photocatalysis (excited electrons or holes). However, the decrease in the rate of H₂O₂ generated was *ca*. 58%. In addition, degradation test of H₂O₂ (1 mM) in an aqueous solution of CH₃OH under condition of Ar (oxygen-free) atmosphere that cannot generate H₂O₂ was also performed in the absence or presence of visible light (λ > 420 nm). As shown in Fig. S3, the degradation of H₂O₂ over 0.1 wt% Pd-BiVO₄ prepared using phosphate was significantly inhibited compared with that for carbonate in both conditions

of dark and light irradiation. These results suggest that the PO_4^{3-} partially coated Pd NPs act as effective co-catalyst for selective reduction of O_2 to H_2O_2 by inhibiting H_2O_2 degradation (Fig. 10). As shown in proposed mechanism of Fig. 10, the results suggested that a BiVO₄ photocatalyst decorated selectively on its reductive faces with small, narrow size distribution, partially phosphate-coated Pd NPs exhibited excellent activity for H_2O_2 production from O_2 .

4. Conclusions

In summary, the Pd was suitable metal co-catalyst for H₂O₂ production by the twoelectron reduction of O₂ under visible light ($\lambda > 420$ nm) irradiation on the BiVO₄ photocatalyst. The PAD method using an aqueous phosphate buffer solution adjusted at pH = 7.2 provided smaller Pd NPs with a narrow size distribution on the reductive surfaces of the BiVO₄ photocatalyst compared with the conventional methods of IMP and DP-CR and other conditions in the PAD method. The 0.1 wt% Pd-BiVO₄ prepared in the PAD method using phosphate achieved the maximum performance, where the maximum accumulation reached *ca*. 600 µM after only 2 h, in our tried photocatalysts in this study. The specific improvement of performance might be concluded to be a result of the synergy by the formation of small Pd NPs on the reductive surfaces of the BiVO₄ in the PAD at pH = 7 and partial PO₄³⁻ coat on Pd NPs derived from the phosphate. This study contributes to the developing design guidelines of promising co-catalyst for achieving efficient H₂O₂ generation and accumulation from O₂. The more detail tracking of Pd species for improving the H₂O₂ production from H₂O and O₂ using the Pd-BiVO₄ are the subjects of current investigations.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgements

The present work was partially supported by JSPS KAKENHI Grant Number JP16H06046 and JP17H06439, the Mazda Foundation (2018), the Kansai University Fund for Supporting Young Scholars (2017), and the Environment Research and Technology Development Fund (3RF-1903) of the Environmental Restoration and Conservation Agency of Japan.

References

- R. Noyori, M. Aoki, K. Sato, Green oxidation with aqueous hydrogen peroxide, Chem. Commun. (2003) 1977-1986.
- Y. Kon, S. Tanaka, K. Sato, Clean and practical oxidation using hydrogen peroxide– Development of catalysis and application to fine chemicals–, Synthesiology 8 (2015) 15-26.
- [3] A. Fingerhut, O. V. Serdyuk, S. B. Tsogoeva, Non-heme iron catalysts for epoxidation and aziridination reactions of challenging terminal alkenes: towards sustainability, Green Chem. 17 (2015) 2042-2058.
- [4] H. Yamashita, K. Mori, Y. Kuwahara, T. Kamegawa, M. Wen, P. Verma, M. Che, Single-site and nano-confined photocatalysts designed in porous materials for

environmental uses and solar fuels, Chem. Soc. Rev. 47 (2018) 8072-8096.

- [5] Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He, Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review, Appl. Catal. B: Environ. 255 (2019) 117739.
- [6] A. Sorokin, S. D. Suzzoni-Dezard, D. Poullain, J. P. Noël, B. Meunier, CO₂ as the ultimate degradation product in the H₂O₂ oxidation of 2,4,6-Trichlorophenol catalyzed by iron tetrasulfophthalocyanine, J. Am. Chem. Soc. 118 (1996) 7410-7411.
- [7] Y. Wu, J. Wu, F. Yang, C. Tang, Q. Huang, Effect of H₂O₂ bleaching treatment on the properties of finished transparent wood, Polymers 11 (2019) 776.
- [8] R. Armon, N. Laot, O. Lev, H. Shuval, B. Fattal, Controlling biofilm formation by hydrogen peroxide and silver combined disinfectant, Water Sci. Technol. 42 (2000) 187-192.
- [9] Y. Yang, R. Dong, Y. Zhu, H. Li, H. Zhang, X. Fan, H. Chang, High-performance direct hydrogen peroxide fuel cells (DHPFCs) with silver nanowire-graphene hybrid aerogel as highly-conductive mesoporous electrodes, Chem. Eng. J. 381 (2020) 122749.
- [10] M. H. Tran, B. J. Park, B. H. Kim, H. H. Yoon, Mesoporous silica template-derived nickel-cobalt bimetallic catalyst for urea oxidation and its application in a direct urea/H₂O₂ fuel cell, Int. J. Hydrogen Energy 45 (2020) 1784-1792.
- [11] S. A. M. Shaegh, S. M. M. Ehteshami, S. H. Chan, N. T. Nguyen, S. N. Tan, Membraneless hydrogen peroxide micro semi-fuel cell for portable applications, RSC Adv. 4 (2014) 37284-37287.
- [12] Y. Yamada, M. Yoneda, S. Fukuzumi, High and robust performance of H₂O₂ fuel

cells in the presence of scandium ion, Energy Environ. Sci. 8 (2015) 1698-1701.

- [13] K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Seawater usable for production and consumption of hydrogen peroxide as a solar fuel, Nature Commun. 7 (2016) 11470.
- [14] X. Jia, F. Sun, Y. Fei, M. Jin, F. Zhang, W. Xu, N. Shi, Z. Lv, Explosion characteristics of mixtures containing hydrogen peroxideand working solution in the anthraquinone route to hydrogen peroxide, Process Saf. Environ. Prot. 119 (2018) 218-222.
- [15] S. Ranganathan, V. Sieber, Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis–A review, Catalysts 8 (2018) 379.
- [16] M. Teranishi, S. Naya, H. Tada, Temperature- and pH-dependence of hydrogen peroxide formation from molecular oxygen by gold nanoparticle-loaded titanium(IV) oxide photocatalyst, J. Phys. Chem C 120 (2016) 1083-1088.
- [17] B. O. Burek, D. W. Bahnemann, J. Z. Bloh, Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide, ACS Catal. 9 (2019) 25-37.
- [18] M. Teranishi, R. Hoshino, S. Naya, H. Tada, Gold-nanoparticle-loaded carbonatemodified titanium(IV) oxide surface: Visible-light-driven formation of hydrogen peroxide from oxygen, Angew. Chem. Int. Ed. 55 (2016) 12773-12777.
- [19] H. Kim, O. S. Kwon, S. Kim, W. Choi, J. H. Kim, Harnessing low energy photons (635 nm) for the production of H₂O₂ using upconversion nanohybrid photocatalysts, Energy Environ. Sci. 9 (2016) 1063-1073.
- [20] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Sunlight-driven hydrogen peroxide production from water and molecular

oxygen by metal-free photocatalysts, Angew. Chem. Int. Ed. 53 (2014) 13454-13459.

- [21] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, Graphitic carbon nitride doped with biphenyl diimide: Efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight, ACS Catal. 6 (2016) 7021-7029.
- [22] Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Hydrogen peroxide production on a carbon nitride-boron nitride-reduced graphene oxide hybrid photocatalyst under visible light, ChemCatChem 10 (2018) 2070-2077.
- [23] Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion, Nature Mater. 18 (2019) 985-993.
- [24] S. Fukuzumi, Y. M. Lee, W. Nam, Photocatalytic oxygenation reactions using water and dioxygen, ChemSusChem 12 (2019) 3931-3940.
- [25] Y. H. Hong, J. W. Han, J. Jung, T. Nakagawa, Y. M. Lee, W. Nam, S. Fukuzumi, Photocatalytic oxygenation reactions with a cobalt porphyrin complex using water as an oxygen source and dioxygen as an oxidant, J. Am. Chem. Soc. 141 (2019) 9155-9159.
- [26] H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa, T. Hirai, Au nanoparticles supported on BiVO₄: Effective inorganic photocatalysts for H₂O₂ production from water and O₂ under visible light, ACS Catal. 6 (2016) 4976-4982.
- [27] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O₂ evolution under visible

light irradiation on BiVO₄ in aqueous AgNO₃ solution, Catal. Lett. 53 (1998) 229-230.

- [28] K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe, H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline BiVO₄ film electrodes under visible light, Chem. Commun. (2003) 2908-2909.
- [29] A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-lightresponsive BiVO₄ fine particles prepared in an aqueous acetic acid solution, J. Mater. Chem. 20 (2010) 7536-7542.
- [30] Y. Miseki, K. Sayama, Highly efficient Fe(III) reduction and solar-energy accumulation over a BiVO₄ photocatalyst, Chem. Commun. 54 (2018) 2670-2673.
- [31] K. Fuku, K. Sayama, Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode, Chem. Commun. 52 (2016) 5406-5409.
- [32] K. Fuku, Y. Miyase, Y. Miseki, T. Gunji, K. Sayama, WO₃/BiVO₄ photoanode coated with mesoporous Al₂O₃ layer for oxidative production of hydrogen peroxide from water with high selectivity, RSC Adv. 7 (2017) 47619-47623.
- [33] K. Fuku, Y. Miyase, Y. Miseki, T. Funaki, T. Gunji, K. Sayama, Photoelectrochemical hydrogen peroxide production from water on a WO₃/BiVO₄ photoanode and from O₂ on an Au cathode without external bias, Chem. Asian J. 12 (2017) 1111-1119.
- [34] B. Tapin, F. Epron, C. Especel, B. K. Ly, C. Pinel, M. Besson, Study of monometallic Pd/TiO₂ catalysts for the hydrogenation of succinic acid in aqueous phase, ACS Catal. 3 (2013) 2327-2335.

- [35] A. L. Bugaev, V. A. Polyakov, A. A. Tereshchenko, A. N. Isaeva, A. A. Skorynina,
 E. G. Kamyshova, A. P. Budnyk, T. A. Lastovina, A. V. Soldatov, Chemical synthesis and characterization of Pd/SiO₂: The effect of chemical reagent, Metals 8 (2018) 135.
- [36] Y. Holade, C. Canaff, S. Poulin, T. W. Napporn, K. Servat, K. B. Kokoh, High impact of the reducing agent on palladium nanomaterials: new insights from X-ray photoelectron spectroscopy and oxygen reduction reaction, RSC Adv. 6 (2016) 12627-12637.
- [37] S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida,
 B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I.
 Chorkendorff, I. E. L. Stephens, J. Rossmeisl, Enabling direct H₂O₂ production
 through rational electrocatalyst design, Nature Mater. 12 (2013) 1137-1143.
- [38] A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida,
 T. W. Hansen, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, Trends in the electrochemical synthesis of H₂O₂: Enhancing activity and selectivity by electrocatalytic site engineering, Nano Lett. 14 (2014) 1603-1608.
- [39] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO₄, Nature Commun. 4 (2013) 1432.
- [40] V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO₂ upon the photocatalytic destruction of oxalic acid, J. Mol. Catal. A: Chem. 263 (2007) 32-38.
- [41] J. J. Cruywagen, R. J. Kriek, Complexation of palladium(II) with chloride and

hydroxide, J. Coord. Chem. 60 (2007) 439-447.

- [42] G. Agostini, E. Groppo, A. Piovano, R. Pellegrini, G. Leofanti, C. Lamberti, Preparation of supported Pd catalysts: From the Pd precursor solution to the deposited Pd²⁺ phase, Langmuir 26 (2010) 11204-11211.
- [43] Y. Zhang, O. Pluchery, L. Caillard, A. F. Lamic-Humblot, S. Casale, Y. J. Chabal,
 M. Salmeron, Sensing the charge state of single gold nanoparticles via work
 function measurements, Nano Lett. 15 (2015) 51-55.
- [44] D. Curry, A. Cameron, B. MacDonald, C. Nganou, H. Scheller, J. Marsh, S. Beale, M. Lu, Z. Shan, R. Kaliaperumal, H. Xu, M. Servos, C. Bennett, S. MacQuarrie, K. D. Oakes, M. Mkandawirea, X. Zhang, Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems, Nanoscale 7 (2015) 19611-19619.
- [45] H. E. Toma, V. M. Zamarion, S. H. Toma, K. Araki, The coordination chemistry at gold nanoparticles, J. Braz. Chem. Soc. 21 (2010) 1158-1176.
- [46] B. Qi, L. Di, W. Xu, X. Zhang, Dry plasma reduction to prepare a high performance
 Pd/C catalyst at atmospheric pressure for CO oxidation, J. Mater. Chem. A 2 (2014)
 11885-11890.
- [47] H. U. Shin, D. Lolla, Z. Nikolov, G. G. Chase, Pd–Au nanoparticles supported by TiO₂ fibers for catalytic NO decomposition by CO, J. Ind. Eng. Chem. 33 (2016) 91-98.
- [48] B. Brandt, T. Schalow, M. Laurin, S. Schauermann, J. Libuda, H.-J. Freund, Oxidation, reduction, and reactivity of supported Pd nanoparticles: Mechanism and Microkinetics, J. Phys. Chem. C 111 (2007) 938-949.

- [49] K. Shimizu, T. Kubo, A. Satsuma, Surface oxygen-assisted Pd nanoparticle catalysis for selective oxidation of silanes to silanols, Chem. Eur. J. 18 (2012) 2226-2229.
- [50] Y. C. Lin, Y. Y. Chen, B. Y. Yu, W. C. Lin, C. H. Kuo, J. J. Shyue, Sputter-induced chemical transformation in oxoanions by combination of C_{60}^+ and Ar^+ ion beams analyzed with X-ray photoelectron spectrometry, Analyst 134 (2009) 945-951.
- [51] Y. Liu, Y. Zhou, J. Zhang, Y. Xia, T. Chen, S. Zhang, Monoclinic phase Na₃Fe₂(PO₄)₃: Synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries, ACS Sustainable Chem. Eng. 5 (2017) 1306-1314.
- [52] S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, Interfacial chemistry in solidstate batteries: Formation of interphase and its consequences, J. Am. Chem. Soc. 140 (2018) 250-257.
- [53] N. H. Kim, J. H. Lim, S. Y. Kim, E. G. Chang, Effects of phosphoric acid stabilizer on copper and tantalum nitride CMP, Mater. Lett. 57 (2003) 4601-4604.

Fig. 1. Schematic of photocatalytic H_2O_2 generation from O_2 over a reductive co-catalystsupported BiVO₄ in the presence of CH₃OH as a hole scavenger.

Fig. 2. Effects of metal co-catalyst species (1 wt%) supported on BiVO₄ using the IMP method on H₂O₂ production from O₂ in the presence of CH₃OH under visible light ($\lambda >$ 420 nm) irradiation for 2 h.

Fig. 3. (A) XRD patterns, (B) SEM images (inset: corresponding Pd-BiVO₄ illustrations), and (C) H₂O₂ production performances of (a) bare BiVO₄ and 1 wt% Pd-BiVO₄ prepared using (b) IMP, (c) DP-CR, and (d) PAD without phosphate addition under visible light (λ > 420 nm) irradiation for 2 h.

Fig. 4. Effects of Pd loading using (a) IMP and (b) PAD methods (without phosphate) on H_2O_2 production from O_2 in the presence of CH₃OH under visible light ($\lambda > 420$ nm) irradiation for 2 h.

Fig. 5. H_2O_2 production from O_2 in the presence of CH₃OH under visible light ($\lambda > 420$ nm) irradiation for 2 h over 0.1 wt% Pd-BiVO₄ prepared using the PAD method with phosphate buffer solutions of different pH.

Fig. 6. TEM images, size distributions (insets: NP coverage schematics), and average particle sizes (d_{av}) of Pd NPs of 0.1 wt% Pd-BiVO₄ prepared using the PAD method at pH = (a) 3.5 (*i.e.*, without phosphate), (b) 7.2, and (c) 10.9.

Fig. 7. H_2O_2 production from O_2 in the presence of CH₃OH under visible light ($\lambda > 420$ nm) irradiation for 2 h over 0.1 wt% Pd-BiVO₄ prepared by PAD at pH = *ca.* 7 using (a) citrate, (b) acetate, (c) carbonate, (d) borate, or (e) phosphate buffer solutions.

Fig. 8. (A) Pd(3d) and (B) P(2p) XPS spectra of 1.0 wt% Pd-BiVO₄ prepared using PAD at pH = 7.2 in an aqueous phosphate buffer solution, and (C) P(2p) XPS spectrum of BiVO₄ photo-irradiated in an ice bath for 2 h at $\lambda > 300$ nm using a 300-W Xe illuminator in an aqueous phosphate buffer solution adjusted to pH = 7.2 without (NH₄)₂[PdCl₄].

Fig. 9. Comparison of H₂O₂ production from O₂ (a) without or (b) with the initial addition of H₂O₂ (200 μ M) in the presence of CH₃OH under visible light ($\lambda > 420$ nm) irradiation over 0.1 wt% Pd-BiVO₄ prepared using PAD in aqueous (A) carbonate and (B) phosphate buffer solutions (pH = *ca.* 7).

Fig. 10. Proposed mechanism for the effect of phosphate on photocatalytic H_2O_2 production from O_2 in the presence of CH₃OH over Pd-BiVO₄ prepared using PAD.