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Abstract 

The homotopy continuation method becomes a powerful tool for compar
ative statics in the large. It is also, by its nature, to be used for showing the 
existence of zeroes of a map. In this paper, we first present some existence 
theorems concerning set-valued maps. These are obtained from a fundamen
tal theorem on a homotopy continuation method and theorems on continuos 
selections. We then apply them to the Walrasian general equilibrium models 
and show the existence of equilibria. Subsequently, we consider a regular 
economy, and get some insights into the number of equilibria due to the ho
motopy invariance theorem and the norm-coerciveness theorem. Although 
these problems have been investigated by many economists, the homotopy 
continuation method clarifies in a clear and systematic manner why our re
sults have been obtained. 

*The paper is a part of Shiomura (1996). I would like to express my appreciation for the 
financial support I have recieved from the Faculty of Informatics, Kansai University. 
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1 Fixed-point algorithms and economic applications 

By the nature of a. fixed point algorithm, it is closely related to a.n existence 

problem of economic equilibria.. Perhaps the simplest but most powerful fixed 

point theorem which ca.n be computationally implemented is that of Ba.na.ch, i.e., 

the contraction mapping theorem. It ca.n maintain uniqueness a.nd existence of a. 

fixed point a.t one stroke. It ca.n be used also to show the convergence of the Pica.rd 

iteration, so that it ma.y be used to investigate the stability of a.n equilibrium. 

In fact, some authors applied the theorem or its variants to economic anal

ysis; e.g., Ga.le (1964) to a. nonlinear Leontief input-output model; Ha.da.r (196.5-

6) to Wa.rla.sia.n a.nd Cournot models; Okuguchi (1970), a.nd Okuguchi a.nd Szi

da.rovszky (1990) to oligopoly models; Fujimoto (1988, 1990) to Wa.lra.sia.n mod

els. Amongst others, Thorlund-Petersen (198-5) provided a. convergence theorem, 

a generalization of the simple contraction mapping theorem, a.nd examined global 

stability of equilibria. in several economic models. 

On the other hand, Uza.wa (1960) showed the global stability of a.n equi

librium of the successive ta.tonnement process, while Ga.bay a.nd Moulin (1980) 

a.nd Okuguchi a.nd Szida.rovszky (1990) studied the global stability of a.n Cournot 

equilibrium of a. sequential adjustment process. The process considered by these 

authors is, indeed, the Gauss-Seidel process. 

After Scarf (1967) provided a. new constructive method for finding equilibria, 

various fixed point algorithms were used to show the existence of a. Wa.lra.sia.n 

competitive equilibrium; e.g., Scarf (1973) with the collaboration of Hansen, Todd 

(1976), and Doup et a.I. (1987). All these works use simplicia.l algorithms. 

The complementarity problem which is closely related to the fixed point 

problem is also discussed in economic analyses. In fact, both problems have the 

same origin, namely, the linear programming problem. 

Eaves (1976) a.nd Ma.yerson (1981) discussed the existence of equilibria for 

linear economic models. The former investigated a. linear pure exchange economy 

by using Lemke's linear complementary pivoting algorithm. The latter studied 

a linear monetary economy a.nd showed that the equilibrium ca.n be found by 

solving a. finite sequence of linear programming problems. Okuguchi (1983), a.nd 

Okuguchi a.nd Szida.rovszky (1990) argued that a. competitive equilibrium ca.n be 
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obtained by solving a nonlinear complementarity problem and, in particular, the 

latter proposed an algorithm which enables us to find a Cournot-Nash equilibrium 

for linear oligopoly models. 

On the other hand, Mathiesen (1985) showed that a competitive equilib

rium can be computed by solving a sequence of linear complementarity problems. 

Interestingly enough, Preckel (1985) examined several alternative solution meth

ods including sequences of linear programs, PL homotopy methods, quasi-Newton 

methods, and sequences of linear complementarity problems, and indicated that 

computing equilibria by sequences of linear complementarity problems is quite 

efficient for large-scale problems. 

The homotopy methods were also used for showing economic equilibria. 

Along the lines of Kellogg et al. (1976), who were early researchers into the 

homotopy methods, Smale (1976) proved, under some rather strong boundary 

conditions, the existence of a Walrasian equilibrium, using an algorithm known as 

the global Newton method. Kamiya (1990) also considered an algorithm which is 

a mixture of Walras' tatonnement and the global Newton method. 

Zangwill and Garcia (1981a-b) used an interesting homotopy continuation 

method for obtaining economic equilibria. In order to find a Walrasian equi

librium, they first consider a so-called abstract economy. Then, the system of 

inequalities, which consists of the optimal conditions of all players, are modified 

into the system of equations. Finally, the system is deformed until we reach an 

equilibrium. A similar argument is applied to a Cournot-Nash equilibrium. 

Algorithms for computing solutions to systems of nonlinear equations with 

a specific structure were provided by Mansur and Whalley (1982), van der Laan 

(1985) and Kamiya (1991a-b). The system considered by them has a block diag

onal structure and is found in general equilibrium· models with nonconvex tech

nologies or some international trade models. 

Recently, somewhat different approaches for computing economic equilibria 

have been suggested by Luenberger and Maxfield (1995). Their algorithms relate 

equilibria to certain optimization problems, and these relations can be used as a 

basis for computing equilibria. Therefore, economically meaningful information 

such as benefit or surplus can be used in the process of calculation. 

All the fixed point algorithms follow a path from a starting point to a zero of 
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a map of interest. Then, in the fixed point algorithm, we can identify starting and 

terminating points with old and new equilibrium positions, respectively. There

fore, it may be used in comparative statics, namely, a comparison between two 

equilibrium positions. Especially, algorithms with the global convergence prop

erty may become powerful tools in comparative statics in the large. In fact, such 

approaches can be ma.de quantitatively and qualitatively. 

Economists have shown interest in what effects a policy change will have on 

many different markets. In this type of problem, a general equilibrium model is 

appropriate, but it sometimes turns out to be so complex that analytical results 

no longer seem possible. At this juncture, we must have recourse to simula

tion by computer. This 'quantitative' compara.tive statics was not possible until 

algorithms for computing an economic equilibrium were available. Shaven and 

Whalley, among others, ma.de great effort to evaluate the effects of changes in 

taxes and ta.riffs (see Shaven and Whalley, 1992). 

Quite a few authors have used fixed point algorithms for 'qualitative' com

parative statics in the large. Fujimoto (1990) used a contra.ction mapping the

orem, i.e., an itera.tive method for a fixed point, to investigate Hicksia.n laws in 

the large for the dominant diagonal case. On the other hand, Shiomura. (199.5-7) 

used a homotopy continuation method to study Hicksia.n laws in the large for 

genera.lized gross-substitute systems and provided a unified approach to global 

compa.ra.tive statics. For the same reasons as stated above, Smale (1995) sug

gested the possibility of comparative statics in the large by ma.king use of global 

Newton's method. 

2 Generalizations of a basic existence theorem 

Since the seminal works of Wald (19:36) and van Neumann {1937) various exis

tence theorems for economic equilibria. have been obtained by many economists. 

Although these remarkable works have long been ignored, it is very interesting 

that before economists noticed the importance of a set-valued map, van Neumann 

had already treated its analysis, which was later developed into Ka.kuta.ni 's fixed 

point theorem. 

Our purpose of this section is to give generalizations of Za.ngwill and Garcia 
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(1981b, Theorem 22.5.1). These are oriented to an economic analysis. For lower 

hemi-continuous maps, generalizations are made via the well-known results of 

Michael (1956) and Browder (1968), that is, the continuous selections theorems. 

On the other hand, for upper hemi-continuous maps, we obtain a generalization 

through the celebrated theorem of Cellina (1969), i.e., the approximate continuous 

selections theorem. 

In the following, we use the usual Euclidean topology, unless otherwise 

mentioned, and consider a zero of a set-valued map: an :i: E X is called a zero 

of a set-valued map 'Y : X --+ Y when O E ,(x). Due to slight differences in 

terminology, we mention the definitions about the continuity of set-valued maps 

following Border (1985). 

Consider a set-valued map 'Y: X--+ Y. We define the graph of 'Y by 

Gr1 = {(x, y) EX x Yly E 1(x)}. 

Let F C X and E C Y. The image of F under 'Y is defined by 

1(F) = LJ 1(x). 
xEF 

The upper inverse of E under 'Y is defined by 

,+[E] = {x E Xl1(x) C E}, 

while the lower inverse of E under 'Y is defined by 

For y E Y, we set 

,-1 (y) = {x E Xly E ,(x)}. 

Note that ,-1 (y) = 'Y-[{y}]. 

Now we define the upper or lower hemi-continuity. A map 'Y : X --+ Y 

is called upper hemi-continuous at x if whenever x is in the upper inverse of 

an open set so is a neighborhood of x; and 'Y is lower hemi-continuous at x if 

whenever x is in the lower inverse of an open set so is a neighborhood of x. A 

map 'Y : X --+ Y is upper hemi-continuous (resp. lower hemi-continuous) if it is 
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upper hemi-continuous (resp. lower hemi-continuous) at every x E X. A map is 

called continuous if it is both upper and lower hemi-continuous. 

Consider a set-valued map -y : X -+ Y with nonempty images. A single

valued map f: X-+ Y is called a selection of -y if for every x EX, f(x) E -y(x). 

It should be noted that, in the above definition, the continuity off is not required 

( cf. Michael, 1956). 

Given E > 0, if there exists a single-valued map f,. : X -+ Y such that 

Gr f,. C B,.(Gr-y), then f,. is called an approximate selection of -y, where B,.(Gq) 

is an E-neighborhood of Gr-y. Hereafter, we denote the boundary and the interior 

of X by ax and int X, respectively. 

Now we make the assumption: 

Assumption 2.1 Let X C Rn be a nonempty compact set with an interior point. 

Consider a map -y : X-+ Rn. There exists an x 0 E int X such that (x - x 0 )y > 0 

for ally E -y(x) if XE ax. 

Note tha.t we assume x 0 is independent of XE ax. 

Theorem 2.1 Let X C Rn be a nonempty compact set with an interior point and 

-y: X-+ Rn have nonempty convex values and satisfy that -y- 1 (y) is open for each 

y. Then there exists a zero of-y in X if Assumption 2.1 holds. 

Proof. In view of Theorem 14.3 of Border (198,5) due to Theorem 1 of Browder 

(1968), we ca.n choose a. continuous selection f: X-+ Rn. 

Let h : X X (0, 1] -+ Rn be a. homotopy defined by 

h(x, t) = (1 - t)(x - x0 ) + tf(x), 

where x0 E int X. Then for all 0 :S t :S 1 a.nd a.II x E ax, 

(x - x0 )h(x, t) = {1- t)llx - x0 112 + t(x - x0 )f(x) > 0. 

This implies tha.t h is boundary-free so tha.t there exists a. zero of f in X, a.nd 

therefore a. zero of -y. D 
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Theorem 2.2 Let X C Rn be a nonempty compact set with an interior point and 

'Y : X ➔ Rn be lower hemi-continuous with nonempty closed convex values. Then 

there exists a zero of 'Y in X if Assumption 2.1 holds. 

Proof. Applying Theorem 14.7 of Border (1985) which is due to Theorem 3.2" of 

Michael (1956), we can choose a continuous selection f : X ➔ Rn. The rest of 

the proof is the same as stated in the previous theorem. □ 

The following corollary is a immediate consequence of Theorem 2.2. 

Corollary 2.1 Consider a continuous single-valued map f : X ➔ Rn, where 

X C Rn is a nonempty compact set with an interior point. Suppose that for any 

x EX, xf(x) = 0 and there exists an x 0 E int X such that if x E ax, x 0 f(x) < 0. 

Then the set of zeroes off is nonempty and compact. 

It should be noted that Corollary 2.1 does not require the convexity of X. 

Next we consider upper hemi-continuous maps. 

Assumption 2.2 Let X C Rn be a nonempty compact set with an interior point. 

Consider a map 'Y : X ➔ Rn. For any x E X, xy = 0 if y E -y( x) and there exist 

an x 0 E int X and an rJ > 0 such that x 0 y < -ry for ally E 'Y(x) if x E ax. 

Theorem 2.3 Let X C Rn be a convex body and 'Y : X ➔ Rn be upper hemi

continuous with nonempty compact convex values. Then the set of zeroes of 'Y is 

compact and nonempty if Assumption 2.2 holds. 

Proof. Using Theorem 9.2.1 of Aubin and Frankowska (1990) due to Theorem 1 of 

Cellina (1969), we can choose an approximate continuous selection fn : X ➔ Rn 

such that Gr_rn(x) E B 1;n(Gr-y) for any integer n > O. 

We now introduce in X x Rn a metric p defined by 

p((.r, y), (x', y')) = max(Jlx - x'II, IIY - y'II), 

where (x, y), (x', y') E X x Rn. Then for any x E ax and _rn(x), there exists a 

pair of (xn, yn) E Gr-y such that p((:r, _rn(x)), (xn, yn)) < l/n. 
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Define a sequence of homotopies hn : X x (0, 1]-+ Rn by 

Noting that X is compact and so is ,(X) since I is upper hemi-continuous and 

compact-valued, there exist an M > 0 and an N > 0 such that llx - x0 11 ~ M for 

all x EX and IIYnll ~ N for all n (see Border, 1985, Proposition 11.16). We thus 

have 

l(x -.x0 )r(x) - (xn - x0 )ynl < llx - x0 11 · llr(x) - Ynll 

+ llx - xnll · IIYnlJ < (M + N)/n. 

Pick a pointy E ,(x) for x E ax and let V = ,+[{ylx0y < -11}]. Since 1' is 

upper hemi-continuous, V is an open neighborhood of x, so that there exists an 

no such that Xn E V for all n ~ n0 • Thus (xn - x0 )yn > 17 for all n ~ no since 

xnyn = 0 and x0yn < -17 for all n ~ no. Therefore, 

(x - x0 )r(x) > 1J - (M + N)/n, 

for all n ~ no. 

Let n1 be an integer greater than or equal to max{ no, (M + N)/17}, then we 

have for all n ~ n1, 

if x E ax and O ~ t ~ 1. This implies that for all n ~ n 1 , hn is boundary-free so 

that there exists an Xn EX such that (xn, 0) E Bifn(Gr,) for all n ~ n1. 

Since Xis compact, there exists a convergent subsequence of {xn}- Without 

loss of generality, we denote it by { Xn}- Suppose that { Xn} converges to an x* E X. 

Then since Gr, is closed, (x*, 0) E Gr,. 

On the other hand, from the upper hemi-continuity ,-1 (0) is closed in X 

so that it is compact. D 

3 Existence of Walrasian equilibria 

Let Rn+l denote the commodity space. For i = 1, ... , m let Xi C Rn+l denote the 

ith consumer's consumption set, Wi E Rn+t his private endowment. We suppose a 
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binary relation Ui on Xi which associates to each Xi E Xi a set U(xi) C Xi. Then 

U(xi) may be interpreted as the set of those object in Xi which are better than 

Xi. Moreover, for j = 1, ... , k let Yj denote the jth supplier's production set. 

Put X = I:~1 Xi, w = I:~1 Wi and Y = I:j=1 Yj. Let a} be the share of 

consumer i in the profits of supplier j. A Walrasian economy is then described 

by a tuple ((Xi,Wi, Ui), (Yj), (a})). 

An attainable state of the economy is a tuple ((xi), (Yj)) E Tii Xix Tii Yj, 

satisfying 
m k 

L Xi - L Yi - w = 0. 
i=l j=l 

Let F denote the set of attainable states and let 

m k 

M = {((xi), (Yj)) E (Rn+lr+k1 LXi - LYi - w = O}. 
i=l J=l 

Then F = (Hi Xi X nj ri) n J\,f. Let Xi be the projection of Fon Xi, and Yj be 

the projection of F on Yj. 

Now we make the following assumptions: 

Assumption 3.1 For each i = l, ... , m, 

1. Xi is closed, convex, bounded from below, and Wi E Xi. 

2. There exists some Xi E Xi satisfying Wi > Xi. 

3. Ui has open graph. 

4- Xi ¢ co Ui(xi). 

5. Xi E cl Ui(xi). 

We mean by co Ui(xi) and cl Ui(xi) the convex hull and the closure of U(xi), 

respectively. 

Assumption 3.2 For each j = l, ... , k, 

1. Yj is closed and convex and O E Yj. 

2. Y n (-Y) = {O}. 

3. Y => -Ri+i. 

-69-



It should be noted that under Assumption 3.2, Y n R++l = {O}, where 

R++l denotes the nonnegative orthant of Rn+l. On the other hand, according to 

Debreu (1959, pp. 41-42) Y is closed. 

Let AY be the asymptotic cone of Y. Then AY n R++l = {O} since Y is a 

closed convex set and O E Y, and therefore, AY C Y. Keeping these remarks in 

mind, from Proposition 20.3 of Border (198,5) we have the following lemma. 

Lemma 3.1 The set F of attainable states is compact and nonempty under As

sumptions 3.1 and 3.2. 

In view of Lemma. 3.1, for each consumer i there is a compact convex set 

I<i containing Xi in its interior. Put x; = Kin Xi. Likewise, for each supplier j 

there is a compact convex set Cj containing Yj in its interior. Put Y; = Cj n Yj. 

Let Sn = {p E R++ 1 I I:f=o Pi = 1}, the standard n-sim plex. 

Assumption 3.3 For each consumer i there is a continuous quasi-concave utility 

Ui satisfying Ui(xi) = {x; E x;ju(x~) > u(xi)}. 

Define "/j : Sn ➔ Yj by 

and set 1ri(P) = max eY'PYi· Also define /Ji: Sn ➔ x; and µi: Sn ➔ x; by 
Y1 1 

and 

/3i(P) = {xi E x:1PXi :s; PWi + L Q~7rj(p)}, 
j 

respectively. Then put 

<: (p) = I: µi (p) - I: 'Y j (p) - w. 
i j 

The proof of the lemma below is somewhat routine. So we leave it out. 

Lemma 3.2 ( is upper hemi-continuous with nonempty compact convex values. 

Assumption 3.4 We assume that 
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1. pz = 0 for all z E ( (p). 

2. There exist a p E int Sn and an T/ > 0 such that pz > T/ for all z E ((p) 

when p E 8Sn. 

Theorem 3.1 Let the economy ((Xi,Wi, Ui), (Yj), (aj)) satisfy Assumptions 3.1-

3.4- Then the set of zeroes of(, i.e., the set of Walrasian equilibria, is nonempty 

and compact. 

Proof. By the previous lemma, r = -( is upper hemi-continuous with nonempty 

compact convex values. Applying Theorem 2.3 to r, we can immediately obtain 

the theorem. It should be noted that zero points are indeed contained in int Sn. 

□ 

We now replace Assumptions 3.2-3.4 with the following. 

Assumption 3.5 For each j = 1, ... , k, 

1. Yj is closed and 8trictly convex and O E Yj. 

2. Y n (-Y) = {O}. 

Assumption 3.6 For each consumer i there is a continuous strictly quasi

concave utility ·ui satisfying Ui(Xi) = {x; E x;lu(x;) > u(xi)}. 

Assumption 3. 7 Suppose that 

1. pz = 0 for all z E ((p). 

2. There exists a p E int Sn such that pz > 0 for all z E ((p) when p E 8Sn. 

Then we have the following theorem. 

Theorem 3.2 Let the economy ((Xi,Wi, Ui), (Yj), (a~)) satisfy Assumptions 3.1 

and 3.5-3. 7. Then the 8et of zeroes of(, i.e., the set of Walrasian equilibria, i8 

nonempty and compact. 

Proof. Under our assumptions, ( is a single-valued continuous map. It follows 

from Corollary 2.1 that we obtain the theorem. D 
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4 The regular economy 

Lastly we get some insights into the number of Walrasian equilibria. Now let 

Z : Sn --+ Rn+l be an excess demand map. Also define q and qo by (P1, ... , Pn) 

and Po = 1 - Li=l Pi, respectively. Consider a map z : S--+ Rn defined by 

n 

z;(q) = Zi(l - L q;, q1, ... , qn), i = 1, ... ,n, 
i=l 

where S = {q E R++I Li=l qi< 1} and R++ denotes the positive orthant of Rn. 

Also define f by 

i = 1, ... ,n, 

that is, the value of excess demand for good i. 

Assumption 4.1 Assume that 

1. pZ(p) = 0 for any p E int Sn, 

2. z is of class C 1 on S. 

3. Dzq has rank n for all q E z- 1 (0), if any. 

Assumption 4.2 If the sequence {p11 } E int Sn converges to a point in 

8Sn, there exists a j E {O, 1, ... ,n} such that {p_;} converges to zero and 

limsup,,--+= Zj(p11 ) = oo. 

Assumption 4.1 implies that we consider a so-called regular economy. As

sumption 4.2 is the desirability assumption used in Dierker (1972). 

Theorem 4.1 The economy has an odd number of equilibria if Assumption.s 4.1 

and 4- 2 are fulfilled. 

Proof. We first construct a homotopy h ; S x [O, 1] --+ Rn defined by 

· i = 1, ... ,n, 

where q? = 1/(n + 1) for all i = 1, ... , n. 

We show that prices on the homotopy path is never close to the boundary 

of S. Suppose the contrary. Then there exists a j E {O, 1, ... , n} such that {p_;} 
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converges to zero and lim sup,,➔00 Zj (p") = oo. If j -j 0, then for some sufficiently 

large v1 

hj ( q"I 't"I) = ( 1 - t"l )( q_? - qJ) + t"I ( - Jj ( q"I)) < 0, 

for some t"1 E [0, l]. On the other hand if j = 0, define ho by 

ho(q, t) = (1 - t)(qo - qg) + t(- fo(q)), 

where f 0 (q) = q0 z0 (q) and z0 (q) = Zo(q). By the same reason as stated above, 

ho ( q"2 ,t"2) < 0 for some sufficiently large v2 and for some t"2 E [0, 1]. But noting 

that q~2 = 1- I::f=1 q'f2 and q~2 zo(q"2 ) = - I::~1 q'f2zi(q"2 ), since 

n 

- L hi ( q"2 ' t"2 ) < 0' 
i=l 

there exists a k E {l, ... ,n} such that hk(q"2 ,t"2 ) > 0. Thus in both cases, a 

contra.diction arises. Therefore, we may assume that prices on the homotopy path 

are contained in a compact subset of S, J(. In addition, we may suppose that the 

prices are contained in int J(. Therefore, h is boundary-free when we restrict h 

to K x [0, l]. 

It follows from the homotopy invariance theorem that f has an odd number 

of zeroes. Since for i = 1, ... , n, fi(q) = 0 if and only if Zi(q) = 0 as far as q; > 0, 

the number of zeroes off is equal to that of z. □ 

Instead of Assumption 4.2 we may suppose that 

Assumption 4.3 If the sequence {p"} E int Sn converges to a point in 8Sn, there 

exists a j E {O, 1, ... , n} such that {pJ} converges to zero and Li~o Z;(p") tends 

to infinity. 

Assumption 4.3 is due to Dierker (1974). If we suppose that Z is bounded 

from below on int Sn, Debreu's Assumption A implies Assumption 4.3 (see De

breu, 1970). 

Theorem 4.2 The economy has an odd number of equilibria if Assumptions 4- 1 

and 4 .3 are fu(filled. 
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Proof. C_onsider the homotopy defined in the proof of Theorem 4.1. Then 

hi(q, t) :S (1 - t) + t(- fi(q)) for i = 1, ... , n. Suppose that for some i E 

{0, 1, ... , n }, Pi converges to zero. By Assumption 4.3, then there exist a 

j E {O, 1, ... , n} and a. v such that Zj(q 11 ) has a sufficiently large value. We 

define ho by ho(q, t) = - Li=l hi(q, t) as in the proof of Theorem 4.1. 

We consider four cases, respectively. In the case that i -/- 0 and j -/- 0, when 

i-/- j, hj(q11 ,t11 ) < 0 if t 11 -/- 0, while if t 11 = 0, hi(q11 ,t11 ) = qy - qp < 0. On 

the other hand, if i = j then hi(q11 , t 11 ) < 0 as stated in the proof of Theorem 

4.1. In the case that i = 0 and j -/- 0, hj(q11 , t 11 ) < 0 if t 11 -/- 0, while if t 11 = 0, 

ho(q11 ,t11 ) < 0 so that there exists a. k E {1, ... ,n}, such that hk(q11 ,t11 ) > 0. In 

the case that i -/- 0 and j = 0, if t 11 -/- 0, h0 (q 11 , t 11 ) < 0 so that there exists a. 

k E {l, ... ,n} such that hA,(q11 ,t'O > 0, while ift11 = 0, hi(q11 ,t11 ) = qr-q? < 0. 

Lastly, in the case that i = 0 and j = 0, h0 (q11 , t11 ) < 0 so that there exists a. 

k E {l, ... ,n} such that hk(q11 ,tr.) > 0. 

· Therefore, we may suppose that prices on the homotopy pa.th are contained 

in a compact subset of S. The rest of the proof is the same as that of Theorem 

4.1. □ 

In the above two proofs, we have shown that if Walras' law is satisfied and 

prices on the homotopy path are completely contained in a compact subset of 

S, then the regular economy has a.n odd number of equilibria. This is in effect 

Theorem 1 of Dierker (1972) (see also Dierker, 1974, Theorem 11.1). 

Furthermore, we obtain the following result. 

Assumption 4.4 If the sequence {p11 } E int Sn converges to a point in 8Sn, 

there exists a pair of ( i, j), i, j E {0, 1, ... , n} such that {pJ} converges to zero and 

limv➔oo Zi (p11 ) = oo, where i may be equal to j. 

When we assume that Z is bounded from below on int Sn, Assumption 4.4 

implies 4.3 and vice versa under Assumption 4.1.1. 

Theorem 4.3 Suppose that Assumptions 4,1.1 and 4.1.2 are satisfied. Also sup

pose that Assumption 4.4 holds. Then z is a homeomorphism of S onto Rn if 

<let Dzq -/- 0 at every point of S. 
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Proof. It should be noted that if det D Zq -=I= 0 at every point of S, z is a local 

homeomorphism at every point of S. 

On the other hand, under our assumptions, z is norm-coercive on the open 

convex set S, which implies that as q approaches 8S, the Euclidean norm of 

z(q) tends to infinity. Therefore, the theorem follows from the norm-coerciveness 

theorem (see Ortega and Rheinholdt, 1970, pp. 136-137). D 

The above theorem, in particular, shows that a regular economy has 

uniquely an equilibrium price vector provided that <let Dzq has a nonzero constant 

sign at all q E S with the desirability assumption. It is, however, sufficient for the 

uniqueness that <let Dzq has a nonzero constant sign at all Walrasian equilibria 

together with the desirability assumption (see Nishimura, 1978, Theorem 1). 
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