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A Homotopy Method for a Comparison between a.
System and its Sub-system

Takashi SHIOMURA

Abstract

The paper discusses, using the path-following algorithm, a comparison be-
tween two equilibrium positions of a system and its sub-system. We consider
from a global viewpoint an extension of the strong Le Chatelier-Samuelson
principle to an economy containing gross-complements. We also briefly dis-
cuss a time-honored problem, Cournot’s conjecture. The paper suggests that
the path-following approach is useful for comparative statics in the large
when not only simple parametric changes but also more complicated ones in
a system have occurred.



1 Introduction

Economists have great interest in the changes of an equilibrium position when
a set of policy parameters or consumer taste has altered. As was shown by Sh-
iomura (1995, 1997), the path-following algorithm discussed by Garcia and Zang-
will (1979), which is a fixed-point algorithm using a homotopy, makes it possible
to study this problein from a global view point in an easy and systematic manner.

In some cases, we are concerned with such a problem as a comparison be-
tween an equilibrium of a system and that of the sub-system. That is, a compar-

ison between two solutions to systems of equations

filxry.o i) = 0,  i=1,...,n, (1)

fi(®1y - Ty gl - -y Eny@) = 0, i=1,...,m, (2)

where 1 < m < n; besides, o € R! and Zj,j=m+1,...,n are given exogenously.
The strong Le Chatelier-Samuelson principle discussed by Samuelson (1947) is a
typical example of this type. A classical problem traced back to Cournot (1838),
the quasi-competitiveness in an oligopoly market, is also included in the above
problem.

The present paper investigates the global strong Le Chatelier-Samuelson
principle making use of the path-following approach, and extends it to an economy
containing complementary commodities, the Morishima case. Subsequently, we
suggest a general procedure for a comparison between a system and its sub-system,

taking Cournot’s conjecture as an illustration.

2 The strong Le Chatelier-Samuleson principle

The Le Chatelier-Samuelson principle was originally concerned with a problem of
thermochemical equilibrium and was introduced into economic theory by Samuel-
son (1947). The principle was argued in connection with extremum problems.
Later, Samuelson (1960) recast it on general systems which are not directly gov-
erned by extremization. Although the principle was stated in a somewhat am-
biguous setting, Eichhorn and Oettli (1972) refined it in terms of weak and strong
versions of the principle. In the present paper, we confine our attention to the

latter case only.



The local and global versions have also appeared in the literature. The
former was discussed extensively by Kusumoto (1976), the later by Morishima
(1964), Sandberg (1974) and Fujimoto (1980). ‘

Now we are concerned with an extension of the global strong principle to
an economy containing gross-complements, so we reformulate it for that purpose.
Let n > 2 and put I = {1,...,n}. Furthermore, let U and T denote the given
nonempty proper subsets of I such that U C T and U # T. Suppose that the

system of equations (1) has solutions 2° and z! according as o equals to o or a!.

Also suppose that when o = o, the sub-system (2), in which n — m is equivalent
to the number of the elements of U (resp. T), has a solution z* (resp. z‘) under
the constraints that z; = a:? for all j € U (resp. j € T') and for at least one j € U
(resp. j € T) &; # z}. Then, the global strong Le Chatelier-Samuelson principle
states that

|z} —2?| > |2 — 2P| > |2t -2?|, iel-T,

where sgn (z! —2?) = sgn (z¥ —2?) = sgn (zt—=z?) for all i € I - T (cf. Morishima
(1964) and Fujimoto (1980)).

In the following, we assume that there exist n + 1 commodities, labelled
0,1,...,n, and commodity 0 is chosen as the numeraire. Let ¢;(p; @) denote the
excess demand function for commodity i, where p = (p1,...,pn) stands for a

normalized price vector and o € R a shift parameter.

Assumption 2.1 We make the following assumptions.

1. The Walras law is satisfied, i.e., Y1 o piei(p;a) =0, where pg = 1.
2. Each ei(p; ) is assumed to be continuously differentiable for any p > 0.

3. If pi tends to zero, ei(p;a*) > 0 (k = 0,1), while if p;: tends to infinity,
ei(pie®) <0 (k=0,1).

4. The parameter shifts from o to o', such that e;(p° ') > 0,1 # 0, and,
for any p > 0, ei(p;ot) = ei(p;a®),i # 0,1, where p* is a solution to
e(p;o*) = 0.

There exists an equilibrium price p° such that e(p; a®) = 0.

Sdl

6. 3 i-0¢€ijp; =0 for any p > 0, where ¢;; = de;/0p;.



Let M be a nonempty proper subset of I and re-label the indices of com-
modities such that M = {1,...,m}and I - M = {m+1,...,n}. In addition, we
denote by x and y vectors consisting of the first m and remaining n — m elements
of p, respectively. Define fi(z,y;a) as —e;(p;e) for all i € M and put y; = pg

and y; = p} for all j € I — M. We consider three zero points of maps

=) =[xy, 3)
M=) = [z, yhed), (4)
fx) = f(z,5;a"), (5)

where § is given exogenously. It should be noted that, by our definition, the first
m elements of p° and p! become zeroes of (3) and (4), denoted by z° and z!,
respectively. We also denote a zero of (5) by .

Consider two homotopies,

hi(z,t) = (1-1t)f%) +tf(z),
R (x,t) = (1-1t)f(z)+tfl(x),

defined on Q@ = X x [0,1], where X is a hyperrectangle of R},, the positive
orthant of R™. For convenience sake, we call h* ‘regular’ if D, h* has full rank
for all (z,t) € Q, where D;h* is the Jacobian matrix of h* with respect to z € X.
Further, k¥ is called ‘boundary-free’ at t if ¢ ¢ X for any  such that h*(z,t) = 0,
where §X is the boundary of X (see Zangwill and Garcia (1981)).

A theorem on the path-following algorithm tells us that there exists a contin-
uously differentiable ‘homotopy-path’ which starts from a solution to h*(z,0) = 0
and terminates at a solution to h*(z,1) = 0 if h* is regular and boundary-free at
all 0 < t < 1. Then, differentiating h*(z,t) = 0,k = 1,2 with respect to the arc
length of the path we obtain two differential equations

& = —iDh'™"-(F - ), (6)
i = —iD*(f1 - ), (7)
where a dot stands for a differentiation with respect to the arc length. A similar
argument to that of Shiomura (1995) makes sure that if D h* is nonsingular,

paths connecting z° to Z and Z to z! can be constructed, and { > 0 along them

under Assumption 2.1.



We call J = [e;;] Metzlerian if all its diagonal entries are negative and all

its ofl-diagonal entries are nonnegative.
Assumption 2.2 Foralli=1,...,n, e;o > 0 for any p and any o.

Lemma 2.1 Supposc that J is Metzerian for any p and any . Also suppose that
Assumptions 2.1 and 2.2 are satisfied. Then, D h* is nonnegatively invertible and

its inverse has all positive diagonal entries if 0 <t < 1.

Proof. Put Df° = [f2] and Df = [f;;]. By Assumptions 2.1.6 and 2.2, for all
1€EM

DA -Off+thiei= - (1-0(h+ Y f54)

JEM JEI-M

- tfo+ DY, fig) >0,
.J€l-M

if 0 < t < 1. It follows from Hawkins-Simon’s theorem that D,h! is nonnegatively
invertible and the diagonal elements of D k! areall positive. Similarly for D,hZ.
(]

We strengthen a part of Assumption 2.1.4 as follows.
Assumption 2.3 For any p > 0, ¢/(p,a°) < ei(p,a!) for anl € M.

Theorem 2.1 Suppose that J is Metzlerian for any p and any «. Then, under
Assumptions 2.1 10 2.3, 0<2° <z <a' and 20 < %, if y* < F < y! and § # y.

Proof. By Shiomura. (1995, Theorem 4.2), we first note that there exists uniquely

an equilibrum price vector p!' > 0 such that p' > p° and p} > pP when o = a!

under Assumptions 2.1 and 2.2. The uniqueness and positivity of p° are also
assured.

Since § > y% and f;; < 0 for all i # j, we obtain for any z
filz,§;0°) < fi(z,y% %) = f2(2), i€ M,
while, in view of Assumptions 2.1.4 and 2.3, we have for any z
filx) = filz,Gia') < fi(e,5ia®), i€ M,



with a strict inequality for only I. It follows from (6) and Lemma 2.1 that 0 <
2% < 7 and z < 3.

On the other hand, we have for any z
fi@) = filx,3ia") > filz. ¥ a!) = fl(=z), ie M,

since § < y'. Then, by Lemma 2.1 together with (7), < z. (]

The theorem can be applied recursively to systems in which more of the
endogenous variables are fixed, and therefore, Theorem 2.1 turns out to be a
differentiable variant of Fujimoto’s (1980) Theorem 3. It is noteworthy, however,
that the existence of solutions to the sub-systems is shown in the proof owing to an
argument about a homotopy continuation method. It should be noticed also that
the result in the theorem holds good with strict inequalities if we suppose that J
is Metzlerian and indecomposable for any p and &, and that for any a there exists
a k € M such that ex(p;a) < ex(plia) if pi=pj,i€ Mand p; < pj,j€ET-M
with a strict inequality holding for at least one j € I — M.

Now we attempt to extend Theorem 2.1 to the Morishima case. Suppose
that the nonnumeraire goods are divided, after suitable re-labelling of goods, into
nonoverlapping groups, K = {1,...,k} and L= {k+1,...,n} (n > 3), such that
any two goods belonging to the same group are substitutes for each other and any
two goods belonging to different groups are complementary with each other. In

other words, we suppose that .J is a Morishima matrix such that

€i; Z Oa 1#.1; 11_] € K or i’] € L|

IA

eij 0, teK,jeLoriel,jeK,

e < 0, 21=1,...,n.
We also suppose Morishima’s (N’) which ensures the global stability of the Mor-
ishima. case (see Morishima. (1970)).
Assumption 2.4 For any p and any «,
eio+2) eijpi > 0, ie K,
JjeEL
ci0+2zeijpj > 0, 1€ L.

JEK



Note that Assumption 2.4 implies 2.2. Let R and S be two nonempty subsets
such that R={1,...,r} C K and S = {k+1,...,s} C L, and that RUS becomes

a proper subset of I.

Lemma 2.2 Suppose that Assumptions 2.1 and 2.4 are fulfilled. Then, if J is a
Morishima maltriz with all nonzero entries for any p and any o, and that the sign
patterns of its elements remain unchanged irrespective of the values of p and o,

D.h* is invertible and ils inverse has the form of

Hpr —Hps
-Hsp Hss )’
where each sub-matriz H;;,i,j € {R,S} has all positive entries.

Proof. Put J¥ = —Dyh* k = 1,2. Then, J* is a Morishima matrix with all

nonzero entries if 0 < t < 1. Define the matrix

_(1Ir O
p=(0 _]S),

where Ig and Is are the identity matrices of order r and s — k, respectively. Then
PJ*P~'is Metzlerian if 0 < t < 1. Noting that for any p and any o

Yoeipi+ Y (—eiip) = —( Y eipiten+2) eipit+ Y €iip;)

JER JES jEK-R Jj€S JEL-S
< —( z e;jpj-l-e.'o-l-ZEG;jpj) <0, i1€R,
JEK-R J€EL
Z(-eijl).i) + Z eijpi = —( Z €ijp;j + €io + 2 Z ei;p; + }: €ijp;)
JER JES JEL-S JER i€K-R
< =( ) eipiten+2) ejp)) <0, i€,
j€EL-S i€k

under Assumptions 2.1.6 and 2.4, by applying Hawkins-Simon’s theorem to
—PJ*P-! we obtain the lemma if 0 < ¢ < 1. o

Theorem 2.2 Suppse that J is a Morishima matriz with all nonzero entries for
any p and any o, and that the sign patterns of its elements remain unchanged

irrespective of the values of p and o. Whenl € R (resp. | € S), if y° = § and if



g; < y},je K —R (resp. j € L—-S) and §; >y;,j€ L-S (resp. j € K —R),
then 0 < 29 < #; < a! foralli€ R (resp. i € S) and 2? > &; > z} > 0 for all
i€ S (resp. i € R) under Assumptions 2.1, 2.3 and 2.4.

Proof. 1t follows from Shiomura (1995, Theorem 4.1) that there exists uniquely
an equilibrium price vector p' > 0 such that p} > p and p} > p? if good j is
a substitute of good I, while p} < p% if good j is a complement of good I. The
uniqueness and positivity of p° are also verified.

Since § = y°, we obtain for any =
f(2,5:0%) = f(2,4% a°) = f(a),
while, in view of Assumptions 2.1.4 and 2.3, we have for any «
f(@) = f(z,5;0") < f(z,5;2%,
where a strict inequality holds for only . We thus have for any z
f(2) < f(a),
with a strict inequality for only /. It follows from (6) and Lemma 2.2 that if l € R
0<2? <3, i € R,
) >%;>0, €S,
whileifl € S,
29> % >0, i € R,
0<:1.",-’<:T:i, t€S.

On the other hand, if §; < y},j € K- Rand g; > y},j € L - S, we have
for any x

f(x) > fi(x), i€R,
fz) < flz), ie€S,

while if §; > yj,j € K — Rand §; < y},j € LS, the inequalities are all reversed.
It follows from (7) and Lemma 2.2 that

% <zl t€R,
& >, i€ S,
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if j <y},j€ K — Rand §; > y},j € LS, whereas

&>z},  ieR,
:l-:i<x,'l, 1€S~p

if §; > y},j € K-Rand g; < yjl-,j € L — S. Consequently, we have the desired
result. ]

Theorem 2.2 holds good recursively, so that it becomes a global extension
of the strong Le Chatelier-Samuelson principle for a gross-substitute economy to

an economy containing complementary commodities.

3 Entry in an oligoply market

The previous method is somewhat specific to the problems considerd, so we next
suggest a more general procedure for a comparison between a system and its
sub-system. Again, consider the systems of equations (1) and (2). Let z =
(T1yee 1 Zm), Y = (Tm41y---+25) and § = (Tmgt,---,%n). Suppose that (1) has
uniquely a solution (z°,4°) and (2) a solution z! when y = §. Also suppose that
we are concerned with a comparison between (z°,y°) and (z!,7).

For that purpose, we introduce n — m maps ¥;,j = m+ 1,...,n such that

¥(y) = 0 if and only if y = §. Then make a homotopy
h(z,y,t) = (1 - t)fo(x, y)+ tfl (z,y),

where f° = (fi,...,fn) and f' = (f1,..-\ fus ¥mt1+---,¥n). Thus, if we can

construct a homotopy-path starting from (z%,3°,0) and terminating at (z!,7,1),
we can do the comparison by observing the gradient of the path.

As an illustration of that use, we consider a time-honored problem,
Cournot’s conjecture. Namely, an increase in the number of oligopolists increases
the total output, and therefore decreases the price when all of the oligopolists are
confronted with the demand function with negative slope (see Cournot (1838)).
The local justification was made by, e.g., Okuguchi (1973), while Szidarovszky
and Yakowitz (1982) showed that the conjecture holds good globally under fairly

weak assumptions.



We imagine an oligopolistic market in which there exist N (N > 2) firms
producing homogeneous goods. Let p(}_ z;) be an inverse demand function of the
market, where z; is the output of the ith firm. We assume that z; can vary in a
bounded closed interval ©; = [0,w;]. Put 2 = (z1,...,2n) and QN = I'[fV Q;. We
denote the cost function of the ith firm by Ci(z;).

Let X be an arbitrary subset of RN. Hereafter, a map f is called continu-
ously differentiable on X if there exist an open set U containing X and continu-
ously differentiable map F that coincides with f throughout U N X. Other cases

are defined similarly.

Assumption 3.1 We now reproduce the assumptions made by Okuguchi (1973).
1. p is twice continuously differentiable and p' < 0 for any z € QN.

2. For all i, C; is twice continuously differentiable and satisfies the condition
that C;(0) = 0.

3. Foralli, C; > p' for any x € QN
4. Foralli, p'+x;p' <0 for anyx € QN.
5. For all i, C!(0) < xip' + p < C!(w;) for any z € QV.

Under Assumption 3.1, we can show that there exists uniquely a Cournot
equilibrium in the interior of QN (see Appendix, Theorem A.1). At the equilib-

rium, the following equation holds.

p(z.’r:,-)+:1:,'p'(z z;) — Ci(z;) =0, i=1,...,N.
Let 2° and z! be Cournot equilibria when N = n+4+ 1 and N = n, re-
spectively, and denote the functions C! — (p + z;p') by fi,i =1,...,n+ 1. Put
o= (fis--os far fut1) and f1 = (fiy. .-y fay¥ns1). Then, construct a homotopy

h(z,t) = (1-)f°()+tf (),
= (fll"wfns(l—t)fn-}-l+t7/)n+l) .

defined on Q"*! x [0,1]. We set P41 (Tn41) = Chyy(Tng1) — Chyy(0). It should
be noted that when C)/,,(%n41) > 0 for any T4y € Qny1, h(z,1) = 0 if and only
if v = (21,0).



Theorem 3.1 Suppose that C";(z;) > 0 for any z; € Q;. Then, under Assump-
tion 3.1 other than 8.1.8, 0 < 29 < z! fori=1,...,n and =7 29 > Szl

Proof. We first note that if C; > 0 with Assumption 3.1.1, then Assumption 3.1.3
holds. From the definition of the homotopy, D,h is a nonnegative square matrix
for any « € Q™! and any t € [0, 1], and indeed a positive square matrix for any
x € Q! and any t € [0, 1).

We denote D, h by [h;;], and let J be any nonempty proper subset of I.

Given k (k ¢ J), for any a € 2"*! and any ¢ € [0, 1] we have the inequalities

1 .

u—JZhij > hik, 1€ J,
JjeJ

1 _

th‘.‘ishik‘ 1€ J,
ied

with a strict inequality for ¢ = k since hy; > h;; = hy for all distinct i, j, k, where
#J is the number of the elements of J. It follows from Lemma A.2 in the Appendix
that Dzh is nonsingular for any € Q™! and any t € [0,1]. On the other hand,
in view of Assumption 3.1.5, the boundary-free condition holds for 0 < ¢t < 1.
Consider the sequence 7% — 0, where all 7 > 0 and define the sequence of
homotopies such that
H*(z,t) = h(z,t/(1 + 7).

Then H* is regular and boundary-free at all 0 < ¢t < 1. Therefore, there exists

1k is a

a homotopy-path starting from (x',0) and terminating at (z'*,1), where z
solution to H*(z,1) = 0.

Differentiating the path with respect to the arc length, we get

HES —£(¢’1;+l - fn+l)H;n+1 1+ Tk)s

fori =1,...,n 4+ 1, where H; is the (3,7)th element of DzH"_l. As noted
before, we can presuppose that { > 0 on the homotopy-path. Note also that
Yn41 — fag1 > 0 under Assumption 3.1.5.

Using Lemma A.2 again, we can verify that H, ,, < 0 for all i # n+ 1.

Moreover, we can show that Y""*!#; < 0. To see this, we consider the sign of



PLARD b +1 along the homotopy-path. Let

"

A,‘ = C,' —p',
@i = - +zp),

for i = 1,...,n, and denote the (7, j)th element of D H* by H~"- Then, for
i=1,...,n, Ht = A; + a; and H‘ =aq;forall j#£i Ifi#n+1,3H 1H1n+1
a;y  Hj o+ AiHYL = 0. We thus have -, Hf ., > 0, since Hf ., < 0,
A; > 0, and a; > 0 for all i. Therefore, 29 < z!* for all i = 1,...,n and
Zr}+l 9> Ep+l 1k
) e} 1 It B
Let the sequence z'* have a cluster point z*. Then, taking subsequences if

necessary,

lnn H: (2%, 1) = hm h(z'*,1/(1+ 7%)) = h(z*,1) =0,

k—oo

so that z* = (z',0), and therefore, 29 < z! for all i = 1,...,n and 37"+ 2? >-
Tl

We finally show that the inequalities above, in fact, hold good strictly. Let
0= M a0 and s' = TP el If s° = s!, then there is an ¢ # n + 1 such that
x? < z! because 2%, > 0. This implies that

0 = p(s') +2lp(s") - Cilal) < p(s") + 2lp'(s") - Ci(a?)
= p(s°) + 2 (s) - Ci(a) = 0,

since p' < 0 and C; > 0. This is a contradiction. If 29 = ! for some i # n+ 1,

0 = p(s') +2ip'(s") = Cilal) = p(s") + 2lp'(s") — Ci(a?)
> p(s%) +2p(s°) - Ci(a]) = 0,

since % > s! and p' + 2;p" < 0. Again, we obtain a contradiction. The proof is
thus complete. o

Theorem 3.1 is a global extension of Okuguchi (1973), but a special case of
Szidarovszky and Yakowitz (1982, Theorem 4).



4 Concluding remarks

We thus far have studied comparative statics in the large based on a fixed-point
algorithm. In Shiomura (1995, 1997), we investigated from a global view point the
Hicksian laws of comparative statics for generalized gross-substitute systems, and
showed that essentially the same procedures as used in local alnalyses lead us to
global results. The first and second Hicksian laws in the large in fact have a close
relationship to the global ‘weak’ Le Chatelier-Samuelson principle (see Fujimoto
(1980, Theorem 1)).

Although the problems in this paper refering to the global ‘strong’ principle,
at first sight, seem to be different from the previous ones, and therefore require
a distinct technique, we show that a similar argument using a homotopy is appli-
cable. This suggests that the path-following approach may find applications to a

wide variety of economic problems.
Appendix

In this appendix, we use the following notation.

1. a': the ith row vector of a matrix A.
2. b(7): a vector obtained from a vector b by deleting the ith component.

3. A(;.): a matrix obtained from A by deleting the ith row and the jth column
of A.

I: the set {1,...,n}..

J: the relative complement of J with respect to the set 1.

I(3): a subset of T by deleting the element i of I.

J(#): a subset of I which does not contain 1.
):

J(i): the relative complement of J(i) with respect to the set I(3).

© ® N e oo

fi(;:): a matrix obtained from A(,L‘) by bringing a"(h) in the place between
a*=1(h) and a*t1(h) (see Uekawa (1971, p. 214)).

10. Agn: the (k,h)th cofactor of a matrix A.
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We first show the existence and uniqueness of a Cournot equilibrium.
Lemma A.1 Let h(z,t) = (1-t)(z— )+t f(z), where T denotes an interior point
of QV. Then, for any z € QV and any t € [0,1], D,h is a P-matriz, a matriz
having all principal minors positive. In particular, D f is everywhere a P-matriz
in QN.

Proof. Define the (¢, j)th element of D;h by h;;. Notice that under Assumptions
3.1.3 and 3.1.4, D.h is a nonnegative square matrix, and that hi; > hi; = hj, @ #
j# k for any = € QN and any t € [0,1].

Let J be a nonempty proper subset of I, and denote the numbers of the
elements of J and J by §J and f#§J, respectively. Then, we have for any z € QV
and any t € [0,1],

1 1 .
ﬂ_thij > B—;-—Zh,:j, 1€ J,
JjeJ T ed

1 1 .5
ﬂ72h”<ﬁzh”’ tEJ.

i€J jeJ

It follows from Uekawa (1971, Theorem 1) that the transposed matrix of D h,
and therefore D, h itself becomes a P-matrix for any z € QN and any t € [0,1]. O

Theorem A.1 Suppose that Assumption 3.1 holds. Then, there exists uniquely a

Cournot equilibrium in the interior of QV.

Proof. Using the homotopy defined in the above lemma, we can make sure that
by Assumption 3.1.5, h is boudary-free at all t € [0, 1].

According to Lemma A.1, D_h is nonsingular for any z € Q" and any
t € [0,1). In addition, Df is everywhere a P-matirx in QV. Therefore, we can
construct a homotopy-path which starts from (z,0) and terminates at (z*,1),

where x* is a unique solution to f(z) = 0. o

The lemma below is used in the proof of Theorem 3.1.
Lemma A.2 Let A = [a;;] be a nonnegative (resp. positive) square matriz of

order n, and J be any given nonemply proper subset of I. Suppose that for any
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given k (k ¢ J), there ezist ') > 0,5 € J, such that

Z a,'j:cf,’;) > @ik, i€ J, (8)
i€J
> aijiv(J,;-) < @i,y ielJ, 9)
jeJ

with a strict inequality for i = k. Then, A is a P-matriz. Moreover, A™! has

positive diagonal entries and nonpositive (resp. negative) off-diagonal ones.

Proof. The proof is similar to that of sufficiency of Uekawa (1971, Theorem 5).
We first note that, from the above inequalities, A has positive diagonal elements.
Following Uekawa’s procedure, we can then ascertain that A is a P-matrix (see
Uekawa (1971, pp. 214-215)).

Furthermore, let h ¢ J and h # k. Put 25; = Yrejn) :cf,’;) if j € J(h), while
if j € J(h), put z;; = 1. Then, summing (8) and (9) over k € J(h), respectively,

we arrive at the inequalities

Z a;ry; > Z a;;ry;j, i € J(h), (10)
J€J(h) JjeJ(h)

Z a;;ry; < Z a;;ry;, 1€ J_(h),
JEJ(h) jed(h)

Z ap;ry; < Z ap;TJ;.

Jj€J(h) jeJ(h)

Therefore, det /i(,kl) > 0 using Uekawa (1971, lemma 5). In particular, if
A is a positive matrix, let x5; = 1 + ¢ for j € J(h), where € > 0 is sufficiently
small so that strict inequalities (10) remain valid. Then, applying Uekawa (1971,
Theorem 1), we have det /i(,'i) > 0. Noting that Ay = —det A(,’i), we obtain the

lemma since A is a P-matrix. O
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