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Abstract 

The pa.per discusses, using the path-following algorithm, a comparison be­
tween two equilibrium posit.ions of a system and its sub-system. We consider 
from a global viewpoint a.n ext.ension of the strong Le Chatelier-Samuelson 
principle t.o an economy containing gross-complements. We also briefly dis­
cuss a time-honored prnblem, Cournot's conjecture. The paper suggests that 
t.he path-following a.pproach is useful for comparative statics in the large 
when not only simple paramet.ric changes but also more complicated ones in 
a system have occurred. 
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1 Introduction 

Economists have great interest in the changes of an equilibrium position when 

a. set of policy pa.ra.meters or consumer taste has altered. As was shown by Sh­

iomura (1995, 1997), the path-following algorithm discussed by Garcia and Zang­

will ( 1979), which is a. fixed-point algorithm using a. homotopy, makes it possible 

to study this problem from a global view point in an easy and systematic manner. 

In some cases, we a.re concerned with such a problem as a comparison be­

tween a.n equilibrium of a. system a.nd that of the sub-system. That is, a compar­

ison between two solutions to systems of equations 

i = 1, .. . ,n, 
i= 1, ... ,m, 

(1) 

(2) 

where 1 ~ m < n; besides, Ol E R1 and xi, j = m + 1, ... , n are given exogenously. 

The strong Le Chatelier-Samuelson principle discussed by Samuelson (1947) is a 

typical example of this type. A classical problem traced back to Cournot (1838), 

the quasi-competitiveness in a.n oligopoly market, is also included in the above 

problem. 

The present paper investigates the global strong Le Chatelier-Samuelson 

principle ma.king use of the path-following approach, and extends it to an economy 

containing complementa.1·y commodities, the Morishima case. Subsequently, we 

suggest a. genera.I procedure for a comparison between a system and its sub-system, 

ta.king Cournot's conjecture as an illustration. 

2 The strong Le Chatelier-Samuleson principle 

The Le Cha.telier-Sa.muelson principle was originally concerned with a problem of 

thermochemical equilibrium a.nd was introduced into economic theory by Samuel­

son (1947). The principle was a.rgued in connection with extremum problems. 

Later, Samuelson (1960) recast it on general systems which are not directly gov­

erned by extremiza.tion. Although the principle was stated in a somewhat am­

biguous setting, Eichhorn and Oettli (1972) refined it in terms of weak and strong 

versions of the principle. In the present paper, we confine our attention to the 

latter case only. 
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The local· 1:1.nd global versions have also appeared in the literature. The 

former was discussed extensively by Kusumoto (1976), the later by Morishima 

(1964), Sandberg (1974) and Fujimoto (1980). 

Now we are concerned with an extension of the global strong principle to 

a.n economy coi1ta.ining gross-complements, so we reformulate it forthat purpose. 

Let n ~ 2 and put / = {l, ... , n}. Furthermore, let U and T denote the given 

nonempty proper subsets of/ such that U C T and U #= T. Suppose that the 

system of equations (1) has solutions x0 and x 1 according as o equals to o0 or o 1 • 

Also suppose that when o = o 1, the sub-system (2), in which n - m is equivalent 

to the number of the elements of U (resp. T), has a solution xu (resp. xt) under 

the constraints that x; = xJ for all j E U (resp. j E T) and for at least one j E U 

(resp. j E T) x; #= xj. Then, the global strong Le Cha.telier-Samuelson principle 

sta.tes that 

Ix! - xl.>I > jx!' - x<:>j > Ix~ - xl.>j 
I I - I I - I I I 

i E / - T, 

wheresgn (x]-x?) = sgn (xf-x?) = sgn (x~-x?) for all i E 1-T (cf. Morishima 

(1964) a.nd Fujimoto (1980)). 

In the following, we assume that there exist n + 1 commodities, labelled 

0, 1, ... , n, a.nd commodity 0 is chosen as the numeraire. Let ei(p; o) denote the 

excess demand function for commodity i, where p = (p1 , ••• ,Pn) stands for a 

normalized price vector a.nd o E R a shift parameter. 

Assumption 2.1 We make the following assumptions. 

1. The Walras law is satisfied, i.e., Ef:oPiei(Pi o) = 0, where Po= 1. 

2 .. Each ei(Pi o) is assumed to be continuously differentiable for any p > 0. 

3. If Pi tends to zero, ei(p; ok) > 0 (k = 0, 1), while if Pi' tends to infinity, 

ei(JJ; ok) < 0 (k = 0, 1). 

4- The parameter shifts from a-0 to o 1 , such that e,(p0 ; a-1 ) > 0, l -::/= 0, and, 

for any p > 0, ei(Pi o-1) = ei(JJ; o 0 ), i #= 0, l, where pk is a solution to 

e(p; ci) = O. 

5. There exists an equilibrium price p0 such that e(p; o 0 ) = O. 

6. Lj=O ei;P; = 0 for any ]J > 0, where ei; = 8eif8p;. 
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Let M be a nonempty proper subset of I and re-label the indices of com­

modities such tha.t M = {1, ... , m} and / - M = {m + 1, ... , n}. In addition, we 

denote by :i: a.nd y vectors consisting of the first m and remaining n - m elements 

of p, respectively. Define fi(x, y; a) as -ei(p; a) for a.II i E M and put yJ = pJ 

a.nd yJ = pJ for all j E / - M. We consider three zero points of maps 

J0 (x) - f(:i:,yo;ao), (3) 

J1(:,:) - /(:r.,yl;al), (4) 

/(x) /(x,fj;a1), (5) 

where fj is given exogenously. It should be noted that, by our definition, the first 

m elements of p0 and p1 become zeroes of (3) a.nd (4), denoted by x0 and x1, 
respectively. We also denote a zero of (5) by x. 

Consider two homotopies, 

h1 (x, t) = (1 - t)/0 (x) + tf(x), 

h.2(x,t) = (1- t)/(x) + t/1(x), 

defined on Q = X x [0, 1], where X is a hyperrectangle of R'i\, the positive 

ortha.nt of Rm. For convenience sake, we ca.II hk 'regular' if Dxhk has full rank 

for all (x, t) E Q, where Dxhk is the Jacobian matrix of hk with respect to x EX. 

Further, 1,.A, is called 'boundary-free' at t if x ¢ {)X for any x such that hk(x, t) = 0, 

where {)X is the boundary of X (see Zangwill and Garcia (1981)). 

A theorem on the pa.th-following algorithm tells us that there exists a contin­

uously differentiable 'homotopy-path' which starts from a solution to hk(x, 0) = 0 

and terminates a.ta solution to hk(x, 1) = 0 if hk is regular and boundary-free at 

all 0 $ t $ 1. Then, differentiating h.k(x, t) = 0, k = 1, 2 with respect to the arc 

length of the pa.th we obtain two differential equations 

:1: = -iDxh1- 1 • (1 - / 0 ), 

x = -iDxh.2-1 . (fl - /), 

(6) 

(7) 

where a dot stands for a differentiation with respect to the arc length. A similar 

argument to that of Shiomura. (1995) makes sure that if Dxhk is nonsingular, 

paths connecting x 0 to x and x to x1 can be constructed, and i > 0 along them 

under Assumption 2.1. 
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We ca.II J = [eij] Metzlerian if all its diagonal entries are negative and all 

its off-diagonal entries are nonnegative. 

Assumption 2.2 For all i = 1, ... , n, eio > 0 for any p and any a. 

Lemma 2.1 S'ttppose that J is Metzlerian for any p and any a. Also suppose that 

Assumptions 2.1 and 2.2 are satisfied. Then, D2}ik is nonnegatively invertible and 

its inverse has all positive diagonal entries if O $ t $ 1. 

Proof. Put D / 0 = [/5) and D f = [h;]. By Assumptions 2.1.6 and 2.2, for all 

i EM 

"""' 0 -~ {(1 - t)h; + t li,}x, = 
jEM 

(1 - t)U?o + I: 1iyJ) 
iEl-M 

t(fio + L h;Y;) > 0, 
jEI-M 

if O $ t ~ 1. It follows from Hawkins-Simon's themem that Dxh1 is nonnegatively 

invertible and the diagonal elements of Dxh.1- 1 are all positive. Similarly for Dxh2 • 

0 

We strengthen a part of Assumption 2.1.4 as follows. 

Assumption 2.3 For any p > 0, e,(p,a0 ) < e1(p,01) for an l EM. 

Theorem 2.1 S'ttppose that J i., Metzlerian for any p and any a. Then, under 

Assumptions 2.1 to 2.3, 0 < :r.0 $ i ~ x1 and x? < x 1 if y0 $ fj ~ y1 and y ::f:. y 1 • 

Proof. By Shiomura. (1995, Theorem 4.2), we first note that there exists uniquely 

an equilibrum price vector p 1 > 0 such that p1 ~ p0 and p/ > P? when o = o 1 

under Assumptions 2.1 and 2.2. The uniqueness and positivity of p0 are also 

assured. 

Since fj ~ y0 and /ii ~ 0 for all i ::f:. j, we obtain for any x 

iE M, 

while, in view of Assumptions 2.1.4 a.ncl 2.3, we have for any x 

iE M, 
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with a. strict inequa.lity for only l. It follows from (6) and Lemma 2.1 that O < 
x0 $ :r. a.nd x? < x,. 

On the other hand, we have for any x 

iE M, 

since fj $ y1. Then, by Lemma. 2.1 together with (7), x $ x 1• □ 

The theorem ca.n be applied recursively to systems in which more of the 

endogenous va.riables a.re fixed, a.nd therefore, Theol'em 2.1 turns out to be a 

differentia.ble varia.nt of Fujimoto's (1980) Theorem 3. It is noteworthy, however, 

tha.t the existence of solutions to the sub-systems is shown in the proof owing to an 

a.rgument a.bout a. homotopy continuation method. It should be noticed also that 

the result in the theorem holds good with strict inequalities if we suppose that J 

is Metzlerian and indec.omposa.ble for any p a.nd a, a.nd that for any o there exists 

a. k E M such tha.t q,(p; a) < ek(p'; a) if Pi = Pi, i E M and Pi $ PJ,j E / - M 

with a. strict inequa.lity holding for at least one j E / - M. 

Now we a.ttempt to extend Theorem 2.1 to the Morishima. case. Suppose 

that the nonnumera.ire goods a.re divided, after suitable re-labelling of goods, into 

nonoverla.pping groups, K = {l, ... , k} and L = {k + 1, ... , n} (n 2 3), such that 

any two goods belonging to the sa.me group a.re substitutes for each other and any 

two goods belonging to different groups are complementary with each other. In 

other words, we suppose tha.t .J is a. Morishima ma.trix such tha.t 

ei.i > o, i -I= j; i,j E Kor i,j E L, 

Ci,i < 0, i E K, j E L or i E L, j E J(, 

Cii < o, i = 1, ... , n. 

We a.lso suppose Morishima.'s (N') which ensures the global stability of the Mor­

ishima. case (see Morishima. (1970)). 

Assumption 2.4 For any p and any a, 

e;o + 2 L e;;Pj > 0, 
jEL 

eiO + 2 L ei;Pj > 0, 
.iEI( 
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Note that Assumption 2.4 implies 2.2. Let Rand S be two nonempty subsets 

such tha.t R = {1, ... , ,·} c I( a.nd S = {k+ 1, ... , s} CL, and that RUS becomes 

a. prnper subset of I. 

Lemma 2. 2 Suppose that Assumptions 2.1 and 2.4 are fulfilled. Then, if J is a 

Morishima matrix with all nonzero entries for any p and any a, and that the sign 

patterns of its elements remain unchanged irrespective of the values of p and a, 

Dxhk is inuertible ancl its int1e1·se has the form of 

( HRR -Hns) 
-HsR Hss , 

t11here each sub-matr-ix Hi;, i, j E { R, S} has all positive entries. 

Proof. Put Jk = -Dxll, k = 1, 2. Then, Jk is a Morishima matrix with all 

nonzern entries if O ~ t ~ 1. Define the matrix 

_ ( IR O ) 
p= 0 -ls ' 

where IR and ls arn the identity ma.trices of order r a.nd s - k, respectively. Then 

P.Jk p- 1 is Metzleria.n if O ~ t ~ 1. Noting tha.t for any p and any o 

L CiJPi + L(-ei,;P;) - -( L CiJPi + eio + 2 L ei;P; + L ei;P;) 
ieR ;es jel( -R ;es jeL-S 

< -( L ei;P; + eio + 2 L ei;P;) < 0, i ER, 
jeK-R jeL 

L(-eijPJ) + L ei,iPi - -( L e;;P,i + eiO + 2 L ei;P; + L ei;P;) 
ieR jeS jeL-S jeR ;er< -R 

< -( L CjjJ}j + eiO + 2 L ei;P;) < 0, i E s, 
jeL-S jeK 

under Assumptions 2.1.6 and 2.4, by applying Hawkins-Simon's theorem to 

-P Jk p- 1 we obta.in the lemma. if O ~ t ~ 1. D 

Theorem 2.2 S'u1>pse that J i.<J a Morishima matrix with all nonzero entries for 

any p and any a, and that the sign patterns of its elements remain unchanged 

irrespectitle of the values of JJ ancl a. When l E R (resp. I E S ), if y0 = '[j and if 
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Yj < yJ,j E K-R (resp. j E L-S) and ii;> y},j E L-S {resp. j E K-RJ, 

then O < x? < Xi < xf for all i E R (resp. i E S) and x? > Xi > xf > 0 /or all 

i ES {resp. i E R) under Assumptions 2.1, 2.3 and 2.4. 

Proof. It follows from Shiomura. (1995, Theorem 4.1) that there exists uniquely 

a.n equilibrium price vector p1 > 0 such that p] > P? a.nd p} > p~ if good j is 

a. substitute of good l, while 7,} < pJ if good j is a complement of good l. The 

uniqueness and positivity of p0 are a.lso verified. 

Since ii= y0, we obtain for any x 

f(x,ii;o:o) = f(x,yo;o:o) = /o(x), 

while, in view of Assumptions 2.1.4 and 2.3, we have for any x 

where a. strict inequa.lity holds for only l. We thus have for any x 

J(x) ~ / 0 (x ), 

with a strict inequality for only l. It follows from {6) and Lemma 2.2 that if l E R 

while if IE S, 

0 0 -< Xj < Xi, 

0 - 0 
Xj >Xi> 1 

:r.? >Xi> 0, 

0 < x? < :'i:i, 

i ER, 

i ES, 

i ER, 

i ES. 

On the other ha.ncl, if ii; < y},j E /( - Rand ii; > yJ,j E L - S, we have 

for any x 

!(x) > /1(x), 

l(x) < /1(x), 

i ER, 

i ES, 

while if iii > yJ, j E 1( - R a.ncl ii; < y], j E L - S, the inequalities are all reversed. 

It follows from (7) and Lemma 2.2 that 

- I 
Xi < Xj 1 

- 1 
Xi> Xj, 
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if y1 < yJ,j EI< - Rand y1 > yJ,j EL - S, whereas 

- > I Xi Xj, i ER, 

i ES, 

if ii.i > yJ, j E J( - R and Y.i < y}, j E L - S. Consequently, we have the desired 

result. D 

Theorem 2.2 holds good recursively, so that it becomes a global extension 

of the strong Le Chatelier-Samuelson principle for a gross-substitute economy to 

a.n economy conta.ining complementary commodities. 

3 Entry in an oligoply 1narket 

The previous method is somewhat specific to the problems considerd, so we next 

suggest a. more genera.I procedure for a. compa.rison between a. system and its 

sub-system. Aga.in, consider the systems of equations (1) a.nd (2). Let x = 
(x1, .. ,,xm), y = (:i:m+I, ... ,xn) and y = (xm+1, .. ,,xn)- Suppose that (1) has 

uniquely a. solution (x0 ,y0 ) a.nd (2) a. solution x1 when y = y. Also suppose that 

we a.re concerned with a. comparison between (x0 , y0 ) and (x 1 , jj). 

For that purpose, we introduce n - m. maps VJj, j = m. + 1, ... , n such that 

t/.1(y) = 0 if and only if y = jj. Then make a. homotopy 

h(x, y, t) = (1 - t)J0 (x, y) + tJ1 (x, y), 

where J0 = (fi, ... ,Jn) and J 1 = (f1,••·,Jm,t/-'m+1,···•'l/1n)· Tlrns, if we can 

construct a. homotopy-pa.th starting from (x0 , y0 , O) and terminating at (x 1 , y, 1), 

we can do the comparison by observing the gradient of the path. 

As an illustration of that use, we consider a. time-honored problem, 

Cournot's conjecture. Namely, an increase in the number of oligopolists increases 

the total output, and therefore decreases the price when all of the oligopolists are 

confronted with the clema.nd function with negative slope (see Cournot (1838)). 

The local justification was 1nade by, e.g., Okuguchi (1973), while Szidarovszky 

and Ya.kowitz (1982) showed that the conjecture holds good globally under fairly 

wea.k assumptions. 
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We imagine an oligopolistic market in which there exist N (N 2::: 2) firms 

producing homogeneous goods. Let P(L :i:i) be an inverse dema.nd function of the 

market, where Xi is the output of the ith firm. We assume that Xi can vary in a 

bounded closed interval H; = (0,w;]. Put x = (x 1, ... , XN) and nN = TI:" S-k We 

denote the cost function of the ith firm by C;(.-i:;). 

Let X be an arbitrary subset of RN. Hereafter, a map / is called continu­

ously differentiable on X if there exist a.n open set U containing X and continu­

ously differentiable map F that coincides with / throughout Un X. Other cases 

a.re defined similarly. 

Assumption 3.1 We now reproduce the assumptions made by Okuguchi {1973). 

1. p is twice continuously differentiable and p' < 0 for any x E nN. 

2. For all i, C\ is twice continuously differentiable and satisfies the condition 

that C;(O) = O. 

3. For all i, c;• > p' for any :r E nN . 

./. For all i, p' + x;p" < 0 for any :r, E n,N. 

5. For all i, CHO) < x;p' + p < C:(w;) for any x E n,N. 

Under Assumption 3.1, we can show that the1·e exists uniquely a. Cournot 

equilibrium in the interior of n,N (see Appendix, Theorem A.1). At the equilib­

rium, the following equation holds. 

i= l, ... ,N. 

Let x0 a.nd x1 be Cournot equilibria when N = n + 1 and N = n, re­

spectively, and denote the functions q - (p + x;p') by /i, i = 1, ... , n + 1. Put 

/ 0 = (Ji, ... ,fn,fn+i) and / 1 = (/1 1 ••• 1 /n,1Pn+1)- Then, construct a homotopy 

h(:i:, t) _ (I - t)f0 (x) + t/1(x), 

(/1, • • •, fn, (1 - t)fn+i + tt/in+i) 

defined on n,n+l X [O, 1]. We set V-'n+1(:1:n+d = c:,+1(Xn+1) - c~+l(O). It should 

be noted tha.t when c::+1 (xn+d > 0 for any Xn+i E nn+l, h(x, 1) = 0 if and only 

if :r = (.1: 1, 0). 
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Theorem 3.1 Suppose that C"i(xi) > 0 for any Xi E ni, Then, under Assump­

tion ,'J.1 other than 3.1.3, 0 < x? < x! for i = 1, ... , n and E?+l x? > Ef xf. 

Proof. We fil-st note that if c;' > 0 with Assumption 3.1.1, then Assumption 3.1.3 

holds. Frnm the definition of the homotopy, Dxh is a nonnegative square matrix 

for a.ny :i: E nn+I a.ncl a.ny t E (0, 1), a.ncl indeed a. positive square ma.trix for any 

:,: E nn+i and any t E (0, 1). 

We denote Dxh by (h.i;], and let J be any nonempty proper subset of I. 

Given k (k (/. J}, for any x E nn+I and any t E (0, 1) we have the inequalities 

i E J, 

i E J, 

with a. strict inequality for i = k since hii > hi; = hik for all distinct i, j, k, where 

U.J is the number of the elements of J. It follows from Lemma A.2 in the Appendix 

that Dxh is nonsingular for any x E nn+t and any t E (0, 1). On the other hand, 

in view of Assumption 3.1..5, the boundary-free condition holds for O ~ t < 1. 

Consider the sequence Tk ➔ 0, where all Tk > 0 and define the sequence of 

homotopies such tha.t 

Then nA· is regular and bounda.ry-free at all O ~ t ~ 1. Therefore, there exists 

a. homotopy-pa.th starting from (:r.11, O} a.ncl terminating a.t (x 1k, 1), where xlk is a. 

solution to Ifk(:r., 1) = O. 

Differentiating the pa.th with respect to the arc length, we get 

for i = 1, ... , n + 1, where lll; is the (i,j)th element of DxHk-1 • As noted 

before, we ca.n presuppose tha.t i > 0 on the homotopy-path. Note also that 

V-'n+I - fn+i > 0 under Assumption 3.1..5. 

Using Lemma A.2 again, we can verify that Hin+l < 0 for a.II i -=/:- n + 1. 

Moreover, we ca.n show that E?+l Xi < O. To see this, we consider the sign of 
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Li+l Iiln+i along the homotopy-pa.th. Let 

( I II) 
U.j - - p + Xj]J , 

for i = 1, ... , n, a.nd denote the (i, j)th element of DxHk by Hi~• Then, for 

i = 1, ... , n, Ht =Ai+ ai and Hi = ai for all j # i. If i # n + 1, Li Hi1Hin+i = 
ai LI H,:1+1 + AiHin+l = 0. We thus have LI Hin+i > 0, since Hin+! < 0, 

Ai > 0, and ai > 0 for all i. Therefore, x? < xlk for all i = 1, ... , n and 

'°'~+I ,,.9 > '°'n+l ,,.lk 
Wi ,t,, L.Ji •"z • 

Let the sequence x 1k have a. cluster point x*. Then, taking subsequences if 

necessary, 

Jim Hk(x 1k, 1) = Jim h(x1k, 1/{l + rk)) = h(x*, 1) = 0, 
k➔oc• ~,➔ ,::,o 

so that :r:* = (x 1 , 0), a.nd therefore, x? ~ x} for a.II i = 1, ... , n and Lf+1 x? > · 
'°'71 1 L,i Xi. 

We finally show that the inequalities above, in fact, hold good strictly. Let 

8° = Li+l x? a.nd s 1 = Li xl. If s0 = s1, then there is an i f= n + 1 such tha.t 

;i:? < xl because x~+I > 0, This implies that 

0 p(s1 ) + xfp'(s1 ) - CI{xI} < p(s1 ) + x?p'(s1) - CI{x?) 

= p(s0 ) + x?p'(s0 ) - Ct(x?) = 0, 

since p' < 0 a.nd c;' > 0. This is a. contra.diction. If x? = xf for some if= n + 1, 

0 p(s1) + xfp'(s1) - Cf(x[) = p(s1 ) + x?p'(s1) - CI(x?) 

> p(s0 ) + x?zl(s0 ) - Cl(x?) = 0, 

since s0 > s 1 a.nd p' + Xip" < O. Aga.in, we obtain a. contradiction. The proof is 

thus complete. D 

Theorem 3.1 is a. globa.l extension of Okuguchi (1973), but a special case of 

Szidarovszky and Ya.kowitz (1982, Theorem 4). 
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4 Concluding remarks 

We thus far have studied comparative statics in the large based on a fixed-point 

algorithm. In Shiomura. (1995, 1997), we investiga.ted from a. global view point the 

Hicksian laws of compa.rn.tive sta.tics for generalized gross-substitute systems, and 

showed that essentially the same procedures as used in local alnalyses lead us to 

global results. The first and second Hicksian laws in the large in fa.ct have a close 

relationship to the global 'weak' Le Chatelier-Samuelson principle (see Fujimoto 

(1980, Theorem 1)). 

Although the problems in this pa.per refering to the global 'strong' principle, 

at first sight, seem to be different from the previous ones, and therefore require 

a. distinct technique, we show that a. similar argument using a. homotopy is appli­

cable. This suggests that the path-following approach may find applications to a 

wide val'iety of economic problems. 

Appendix 

In this appendix, we use the following notation. 

1. ai: the ith row vector of a matrix A. 

2. b(i): a vector obtained from a. vector b by deleting the ith component. 

3. A(j): a. matrix obtained from A by deleting the ith row and the jth column 

of A. 

4. /: the set {1, ... , n.} .. 

5. J: the relative com1>lement of J with respect to the set /. 

6. /(i): a subset of/ by deleting the element i of/. 

7. J(i): a subset of/ which does not contain i. 

8 . .J(i): the relative complement of J(i) with respect to the set /(i). 

9. A(:): a matrix obtained from A(!) by bringing ah(h) in the place between 

ak-t (h) and ak+l(h) (see Uekawa (1971, p. 214)). 

10. Akh: the (k, h)th cofactor of a. matrix A. 
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We first show the existence a.nd uniqueness of a Cournot equilibrium. 

Lemma A.1 Let h(x, t) = (I-t)(x-x)+tf(x), where x denotes an interior point 

of n,N. Then, for any x E n,N and any t E [0, 1], Dxh is a P-matrix, a matrix 

having all principal mirw1·s vosititJe. In particula.r, D f is everywhere a P-matrix 

in UN. 

Proof. Define the (i, j)th element of Dxh by hii• Notice that under Assumptions 

3.1.3 and 3.1.4, Dxh is a nonnegative square matrix, and that hii > hii = hik, ii= 
j i= k for any x E n,N and any t E [0, 1]. 

Let J be a. nonempty proper subset of I, and denote the numbers of the 

elements of J and J by HJ and HJ, respectively. Then, we have for any x E n,N 

and any t E (0, 1], 

i E .J, 

1 1 
tt.J L hij < ttJ ~ hij, 

.1EJ jEJ 

It follows from Ueka.wa (1971, Theorem 1) that the transposed matrix of Dxh, 

and therefore Dxh itself becomes a. P-matrix for any x E n,N and any t E [0, 1]. D 

Theorem A.1 Suppo8e that Assumption 3.1 holds. Then, there exists uniquely a 

Cournot equilibrium in the interior of n,N. 

Proof. Using the homotopy defined in the above lemma, we can make sure tha.t 

by Assumption 3.1.-5, his bouda.ry-free at a.II t E [0, 1). 

According to Lemma A.I, Dxh is nonsingular for a.ny x E n,N and any 

t E [0, 1]. In addition, DJ is everywhere a P-ma.tirx in nN. Therefore, we can 

construct a. homotopy-pa.th which starts from (x, 0) and terminates at (x*, 1), 

where .r,* is a. unique solution to f(x) = 0. D 

The lemma. below is used in the proof of Theorem 3.1. 

Lemma A.2 Let A = [<tij] be a nonnegative (resp. positive) square matrix of 

order n, and J be any given nonempty proper subset of I. Suppose that for any 
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giuen k (k </: J), there exist x{J} > 0,j E J, such that 

L ai;x{J} > aik, 
;eJ 

L ai;x{J} ~ aik, 
;eJ 

i E J, (8) 

(9) 

with a strict inequality for i = k. Then, A is a P-matrix. Moreouer, A- 1 has 

positive diagonal entries and nonpositive (resp. negative) off-diagonal ones. 

Proof. The proof is simila.r to tha.t of sufficiency of Uekawa (1971, Theorem 5). 

We first note tha.t, from the above inequalities, A has positive diagonal elements. 

Following Ueka.wa.'s procedure, we can then ascertain tha.t A is a P-matrix (see 

Uekawa (1971, pp. 214-215)). 

Furthermore, let h </: J a.nd h ::j:. k. Put XJj = LkeJ(h) x{J} if j E J(h), while 

if j E J(h), put XJj = 1. Then, summing (8) and (9) over k E J(h), respectively, 

we a.rrive at the inequalities 

"E lljjXJj > I: aijXJj, i E J(h), (10) 
jEJ(h) jeJ(h) 

"E aijXJj < I: aijXJj, i E J(h), 
jEJ(h) jeJ(h) 

"E ahjXJj < I: ahjXJj• 

jEJ(h) jeJ(h) 

Therefore, det A(7i) 2 0 using Uekawa (1971, lemma 5). In particular, if 

A is a. positive matrix, let ;1:J; = 1 + E for j E J(h), where E > 0 is sufficiently 

small so tha.t strict inequalities (10) rema.in valid. Then, applying Uekawa (1971, 

Theorem 1), we have det A(7i) > 0. Noting that Akh = -det A(!), we obtain the 

lemma. since A is a P-matrix. D 
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