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EFFECT OF NITRIDING PARAMETER ON ACTIVE SCREEN
PLASMA NITRIDING RESPONSE OF SACM645 STEEL
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Abstract

A nitriding steel SACM645 was active screen plasma nitrided using an austenitic
stainless-steel screen to investigate the effect of nitriding parameters such as gas pressure
and the distance between the screen and the sample on the nitriding response. The sample
was treated for 18 ks at 823 K in 25% N, + 75% H,. The gas pressure was changed to 100,
600, and 1200 Pa. The distance between the screen and the sample was also changed to 10,
30, and 50 mm. The nitrided samples were characterized by observing their surface
morphology and cross-sectional microstructure by scanning electron microscopy, X-ray
diffraction, and microhardness testing. After nitriding, polygonal particles with a normal
distribution were observed at the center and edges of all nitrided sample surfaces. The
particles on the sample surface became finer with an increase in the gas pressure. A
nitrided layer with a greater and homogeneous thickness was obtained at a low gas
pressure of 100 Pa.

I. Introduction

The nitriding process is widely used to improve the tribological properties and wear
resistance of steels and titanium alloys. Compared with the conventional nitriding processes
such as gas nitriding and salt bath nitriding, the glow-discharge plasma nitriding process
offers the following advantages: no pollution, high nitrogen potential, short treatment time,
clean environment, and low energy consumption'”. The components to be treated are
subjected to a high cathodic potential to produce plasma directly on their surfaces. An

“edging effect” occurs due to distortions in the electric field around the corners and edges of
the components although the components are well heated. This results in nonuniformity in
properties such as the hardness and thickness of the surface layer”.

Recently, there has been considerable interest in active screen plasma nitriding (ASPN),
through-cage plasma nitriding (TCPN), and cathodic-cage plasma nitriding (CCPN)>®. In these
processes, the edging effect is completely eliminated because the plasma is produced on the
cage and not directly on the samples”. These processes can be used to treat polymers that are
nonconductive materials”'”. However, little has been reported on the effect of the gas pressure
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and the distance between the screen and the sample on ASPN responses such as surface
morphology, microstructure, and nitrogen depth'"*”.

In this study, nitriding steel samples were nitrided by ASPN to investigate the effect of the
nitriding parameters on ASPN responses.

2. Materials and Methods

The sample material used in this study was a nitriding steel SACM645 (chemical
composition (mass%): 0.46% C, 1.57% Cr, 0.85% Al, 0.15% Mo, 054% Mn and balance Fe). The
sample disk was 13 mm in diameter and 5 mm in thickness. The sample surface was
mechanically ground with 150- to 1500-grit SiC, finely polished with 0.05-um alumina In
suspension, degreased ultrasonically in acetone, and dried in air before the sample was placed
in the nitriding furnace.

ASPN experiments were carried out using a direct-current (DC) plasma-nitriding unit
(NDK, Inc. Japan, JIN-1S). Figure 1 presents a schematic diagram of the ASPN apparatus. A
quartz (SiO,) rod was placed on the cathodic stage in order to construct an isolated sample
stage. The sample was placed on the sample stage in a floating potential and isolated from the
cathodic screen and the anode. The screen, which was an expanded metal mesh of austenitic
stainless steel SUS304 with a diameter of 150 mm and a height of 155 mm, was mounted on
the cathodic stage around the sample stage. Mesh specifications of the expanded metal mesh
used were L X S of 8 X 3 mm and thickness of 0.5 mm. SUS304 rods were placed on the
sample stage so that the distance between the screen and the sample could be changed to 10,
30. and 50 mm. The screen was thoroughly degreased ultrasonically in acetone.

Nitriding was performed in a nitrogen-hydrogen atmosphere with 25% N, + 75% H, for 18
ks at 823 K under 100, 600, and 1200 Pa by the ASPN process. After placing the sample on the
sample stage, the chamber was evacuated at ~3 Pa. Then, nitrogen and hydrogen were
introduced into the chamber, and a DC bias voltage was supplied. After nitriding, the DC
supply was switched off, and the sample was cooled to room temperature in the furnace. The
nitriding temperature was monitored using a radiation thermometer. The radiation
thermometer was positioned at the sample in which the distance between the screen and the
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Fig. 1 Schematic illustration of ASPN furnace.
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sample was 10 mm, as depicted in Fig. 1.

After nitriding, cross sections of each sample were first cut using a low-speed saw and
then polished and chemically etched. The nitrided microstructure was examined using a
scanning electron microscope (SEM; JEOL, Japan, JSM-6060LV). The phase structures on the
nitrided surface were determined by theta-2theta X-ray diffraction (XRD, Rigaku, Japan,
RINT-2550V) studies. The entire area of the top surface of nitrided samples was analyzed by
XRD. In addition. the hardness of the surface and the cross sections of the nitrided sample
were measured using a Vickers microhardness tester (Matsuzawa, Japan, MXT50) under a 0.1
N load. Five indentations were performed on each sample, and a 3-point average value (except
both maximum and minimum values) was used for hardness.

3. Results and Discussion

After treatment, the appearances of the samples were examined visually (Fig. 2). The
edging effect was not observed in the samples. This shows that glow discharge did not occur
on the sample surface because the sample was isolated by placing Si0O, ceramics between the
sample and the cathodic stage. Furthermore, in the ASPN process, the samples were heated
to the treatment temperature by the heat radiated from the active screen, which promoted a
higher homogeneity of temperature in the treated samples”.

XRD results of the samples treated by the ASPN process are shown in Fig. 3. a-ferrite,
CrN and 7 -Fe,N were identified on the sample surface under each condition. The layers
formed on each sample were of the same phase, irrespective of the gas pressure and the
distance between the screen and the sample.

Figure 4 presents SEM micrographs of the sample surfaces treated by the ASPN process.
The surface morphologies of samples treated at different pressures are different. Under the
same gas pressure, a uniform, normal distribution of polygonal particles was observed at the
center and edges of the sample surface, irrespective of the distance between the screen and
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Fig. 2 Appearance of SACM645 sample
treated by ASPN at 823 K for 18 ks.
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Fig. 3 XRD pattern of SACM645 sample treated by ASPN at 823 K for 18 ks.
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Fig. 4 Secondary electron image of SACM645 sample treated by ASPN at 823 K for 18 ks.
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the sample. The particle size becomes finer as the gas pressure increases. These results can

be attributed to the Fe,N particles present in the plasma. These particles were formed on t!
active screen and deposited on the sample surface during the ASPN process. Moreover, t
applied voltages during nitriding depended on gas pressures, as depicted in Fig. 5. That is, t!
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applied voltages increased as the gas pressure decreased. At a lower pressure of 100 Pa, the

number of sputtered particles on the active screen increased because of the high voltage.

Therefore, Fe, N deposition increased as the gas pressure decreased, and these deposited

particles grew in number, as depicted in Fig. 6.

Figure 7 depicts the effect of the gas pressure and the distance between the screen and



EFFECT OF NITRIDING PARAMETER ON ACTIVE SCREEN 187
PLASMA NITRIDING RESPONSE OF SACM¢645 STEEL

Applied voltage / V
., TN
Eal =y &
-
/
/

:

*500 © 1000 1500
Gas pressure / Pa

o

Fig. 5 Relationships between applied voltage and gas pressure of
SACM645 sample treated by ASPN at 823 K for 18 ks.
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Fig. 6 Schematic illustration of mechanism of nitrogen mass transfer in ASPN.

the sample on the nitriding case depth. When the samples were treated at 1200 Pa, the
nitriding case depth decreased as the distance between the screen and the sample increased.
This result indicates that the amount of active species available for nitriding depends on the
distance between the cathodic screen and the sample because the sample is isolated by
placing S10, ceramics between the sample and the stage. On the other hand, the nitrided layer
treated at 100 Pa had a homogeneous depth, irrespective of the distance between the screen
and the sample. Moreover, the nitriding case depth treated at 100 Pa was greater than that
treated at 600 and 1200 Pa. These results suggest that the homogeneous temperature
distribution expanded with the decrease in the gas pressure. As a result, a nitrided layer with
a greater and homogeneous depth was obtained at a low pressure of 100 Pa.

Figure 8 shows the cross-sectional hardness distribution of the samples treated by the
ASPN process. The hardness decreased considerably toward the core of the substrate,
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Fig. 7 Nitriding case depth of SACM645 sample treated by ASPN at
323 K for 18 ks.
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Fig. 8 Hardness distribution from surface of SACM645 sample treated by ASPN
at 823 K for 18 ks. (a) from 0 to 1000 um and (b) from 200 to 550 um.

irrespective of the gas pressure and the distance between the screen and the sample. In
addition, the hardening effect of the sample nitrided at 100 Pa was greater than that nitrided
at 600 and 1200 Pa. The dependence of the distance on the surface hardness is a result of the
nitriding case depth on the surface, as depicted in Fig. 7.

Alves ]Jr. et al. demonstrated that the nitriding case depth depends on the sample geometry
during conventional DC plasma nitriding”. Jeong and Kim demonstrated that the nitriding
case depth and particle size on the surface increased with increasing gas pressure for the DC
plasma nitriding®”. In the present investigation, the nitrided layer treated at a lower pressure
of 100 Pa had a homogeneous thickness, irrespective of the distance between the screen and
the sample and the sample geometry. Moreover, the nitriding case depth treated at 100 Pa
was greater than that treated at 600 and 1200 Pa.
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- 4. Conclusions

Nitriding steel SACM645 samples were nitrided by the ASPN process using an austenitic
stainless-steel screen to investigate the effect of nitriding parameters such as gas pressure and
the distance between the screen and the sample on the ASPN responses. After nitriding,
polygonal particles with a normal distribution were observed at the center and edges of all
sample surfaces. The particles on the sample surfaces became finer as the gas pressure
increased. Furthermore, under the gas pressure of 100 Pa, the nitriding case depth was almost
the same, irrespective of the distance between the screen and the sample. In contrast, the
nitriding case depth under the gas pressure of 600 and 1200 Pa became smaller as the distance
between the screen and the sample increased.
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