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Abstract

We give an alternative proof of the duality theorem for crossed products of Hilbert
C*-modules by abelian group actions by using the duality theorem for crossed products
of Hilbert C*-modules by coactions.

1. Introduction

Let (A,G,a) be a C*-dynamical system, that is, a triple (A, G, «) consisting of a
C*-algebra A, alocally compact group G with left invariant Haar measure ds and a group
homomorphism « from G into the automorphism group of A such that G > t — ay(x)
is continuous for each z in A in the norm topology. Denote by L!(A4,G) the Banach*-
algebra of all Bochner integrable A-valued functions on G (see [4, 7.6] for the Banach™-
algebra structure). Then the C*-crossed product A x, G of A by G is the enveloping
C*-algebra of L'(A, G), and we denote by A X, G the reduced crossed product which
is a certain quotient of A x, G. Suppose that X is an A-Hilbert module with an a-
compatible action  of G. Let C(L2(G)) be the set of all compact operators on L*(G)
and let X @ C(L2(@)) be the external tensor product of X and C(L*(G)), which is an
A ® C(L*(G))-Hilbert module, where we always take the minimum C*-tensor product
for C*-algebras.

In [2, Theorem 3.6], the author has proved the first duality theorem:

Theorem (Duality I). If G is abelian, then there exists the dual action 1) of the dual
group G of G on the crossed product X X, G such that the ((A Xq G) Xg @) -Hilbert
module (X X, G) xﬁ@ is isomorphic to the (AQC(L?(@)))-Hilbert module X @ C(L*(G)).

Further in the same paper, he also has proved the second duality theorem:
Theorem (Duality II). IfG is a locally compact group, then there exist a coaction d 4 of
G on the reduced crossed product AXqrG and a coaction éx of G on the reduced crossed
product X xp, G such that the (A Xq,r G) x5, G)-Hilbert module (X Xpr G) Xs55 G i8
isomorphic to the (A ® C(L?(Q)))-Hilbert module X ® C(L*(G)).

These theorems were proved by the author to be mutually independent. The purpose
of this paper is to give an alternative proof of the first duality theorem by using the second
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duality theorem. One merit of the alternative proof to be presented is that the proof is
much shorter and much simpler than the original one. However the relation between the
dual action 7 of non (X x, G) x5 G and the action n ® Adp on X ® C(L*(G)) does not
follow immediately from the proof, where p is the right regular representation of G on
L?(G). On the other hand, one merit of the original proof is that the relation between
ﬁ and 7 ® Adp follows easily from the proof. Nevertheless, in almost all applications, it
would be sufficient only to use that (X x, G) x5 G is isomorphic to X ® C (L3(@)).

2. Notation and Preliminaries

First recall the definition of a Hilbert C*-module. Let A be a C*-algebra. By a left
Hilbert A-module (or a left A-Hilbert module), we mean a left A-module X equipped
with an A-valued pairing (-, -) (called an A-valued inner product), which satisfies the
following conditions:

(H1) (-, -) is sesquilinear. (We make the convention that (- , -) is linear in the first
variable and is conjugate-linear in the second variable.)

(H2) (z, y)=(y, z)* for all z,y € X.

(H3) (ax, y) =a(x, y) for all 2,y € X and all a € A.

(H4) (x, ) 20for all z € X, and (x, =) = 0 implies that = = 0.

(H5) X is a Banach space with respect to the norm ||z|| = ||(z, r}H%

Let B be a C*-algebra. Right Hilbert B-modules are defined similarly except that
we require that B should act on the right of X, that the B-valued inner product (- , -)
should be conjugate-linear in the first variable, and that (z , yb) = (z , )b for all
z,y € X and all b € B.

A representation of a left A- and right B-Hilbert module X is a triple (74, 7x,75)
consisting of nondegenerate representations 74 and 75 of A and B on Hilbert spaces
Ha and Hp, respectively, together with a linear map mx:X — B(Hp, Ha) such that
(R1) mx(ax) = ma(a)rx(x) and wx (xb) = nx(z)7p(b),

(R2) ma(a(z,y)) = mx(2)mx(y)* and 7p((z,y)B) = 7x () 7x(y)
for all a € A,z,y € X, and b € B, where B(Hp,H4) denotes the set of all bounded
linear operators from Hpg into H 4.

Let (A,G,a) and (B,G,3) be C*-dynamical systems. Suppose that 7 is an a-
compatible and B-compatible action of G on a left A- and right B-Hilbert module X, that
is, 17 is a group homomorphism from G into the group of invertible linear transformations
on X such that
(E1) me(a-x) = au(a)me(z) and me(z - b) = n(2) B (b);

(E2) a(ni(@),me(y)) = aelae,y)) and (m(), m(v)) 5 = Bul(z,4)5)
for each t € G,a € A,b € B,z,y € X; and such that ¢t — n,(x) is continuous from G
into X for each z € X in norm.

Then there exists a left (A x G)- and right (B xg G)- Hilbert module X x, G
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containing a dense subspace K (X, G) such that

/fnmﬁlﬂ

@)y (s) = [ Brs(lalt)  wits) )t

for f € K(A,G),z,y € K(X,G), and g € K(B,G). We call X x, G the (full) crossed
product of X by G. Here K(X,G) (resp. K(A,G) and K(B,G)) denotes the set of
continuous functions from G into X (resp. A and B) with compact support.

From now on, without loss of generality we may suppose that X is a right Hilbert
A-module with the A-inner product (-, -). We define a linear operator ©,,, on X by

Ory(2) =2-(y, 2)

for all z,y, 2 € X. We denote by K(X) the C*-algebra gencrated by the set {Oyy | 2y €
X }. Then X is a left K(X)-Hilbert module with respect to the natural left action defined
by ¢ - = t(x) for t € K(X) and z € X, with the inner product x(x){(z , ¥) = Ozy-

Throughout this paper, for a given representation (7, H) of A, we always denote by
7 the representation of A on the Hilbert space L?(H, Q) defined by

(T()€)(t) = m(o-1(a))E(T)

for a € A, € L2(H,G), where L?(H,G) is the Hilbert space of all square integrable
functions from G into H. Define a unitary representation A on L2(H, G) by

A1) = E(s7').

Then (7, \, L?(H,G)) is a covariant representation of A, and the corresponding repre-
sentation 7 x A\ of A x4 G is defined by

T ANz = | F(z(s))A, ds
(Fx M)(a) = [ Fal)N d

for z € K(A, Q). If 7 is faithful, then (7 x AM)(A x4 G) is called the reduced C*-crossed
product of A by G and we denote it by A X4 G.

For K(X), we consider the C*-dynamical system (IC(X), G, Adn). Then n on the left
K(X)-Hilbert module X becomes an Adn-compatible action of G. Let (mic, mx,T4) be a
representation of X into B(Ha, Hi). Define a representation 7x of X into B (L?(Ha,G),
L*(Mi, G)) by

(Tx(2)€)(t) = mx (-1 ())E(2)
forz € X, t € G and € € L?(Ha,G). Then the representation (T, Tx, 7a, VY, A of
X into B(L?*(Ha,G), L*(Hi, G)) satisfies the covariant condition, that is,

(7Fx (ns(2))E) (1) = (W*s7x (2)A*)E) (?)
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for s,t € G and £ € L*(H4,G). Hence we can define the representation 7x x A\ of
X xy, G into B(L*(H4,G), L*(Hx, G)) by

(%X><xﬂ¢n==/£%xgas»AAsds

for z € K(X,G). Suppose that 7 and 74 are faithful representations of K(X) and

A, respectively. Then 7x is automatically faithful and we consider the representation

Tx X M of X x,, G into B(L2(Ha, G), L*(H, G)). We say that (Fx x A4)(X xn G) is

the reduced crossed product of X by G, and denote it by X Xy G. It is easy to verify

that X x, » G is a right (A X4, G)-Hilbert module. We remark that X Xy, G does not

depend on the choice of a pair of faithful representations 7 and 74 of K(X) and A.
We denote by W the unitary operator on L?(G x G) defined by

(Wa)(s,t) =&(s,s ') for € € L*(G x G) and s,t € G.

Let A be the left regular representation of G on L?(G), and define the representation X
of L}(G) on L3(G) by

5= [ s

for f € L'(G). Then the reduced group C*-algebra C*(G) of G is defined as the norm
closure of X(LI(G)) in the set of all bounded linear operators on L?(G). If there is no
confusion, we write A(f) for A(f) above.

Let A be a C*-algebra and denote by M (A ®uin C/(G)) the multiplier algebra for
the minimum C*-tensor product A ®miy C*(G). We then define the C*-subalgebra
M(A @min C(G)) of M(A @min C*(G)) by

—

M(A @ min C:(G» =
{m € M(A ®min CF(G)) Im(1® 2), (1 ® 2)m € A @min C}(G) for all z € C*(G)}.

Consider the homomorphism dg from C*(G) into M (CHG) ®@min CF(G)) defined by
Ic(Mf)) =We(Mf) @ )We" for e LY(G).

Let 64 be a coaction of a locally compact group G on A, that is, §4 is an injective
homomorphism from A into M (A @min C}(G)) satisfying:

(C1) there is an approximate identity {e;} for A such that 64(e;) — 1 strictly in
M(A ®min C2(Q));

(C2) (64 ®id)(d4(a)) = (id ® 6¢)(54(a)) for all a € A, where we always denote by id
the identity map on each considered set.

Let Co(G) be the set of all continuous functions on G vanishing at infinity. We
denote by My the multiplication operator on L?(G) given by f € Co(G) which is defined
by

(M§&)(t) = f(1)E(2)
for all ¢ € L?(G). Then the crossed product A x4 4 G of A by 64 is the C*-subalgebra
of M(A ® C(L*(G))) generated by the set {d4(a)(1 ® My)la € A, f € Co(G) }. We
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say that a linear map dx from a right A-Hilbert module X into the multiplier module
M(X @ C¥(G)) is a 6 a-compatible coaction of the locally compact group G on X if dx
satisfies the following conditions:

(D1) 6x(z)(1a ® 2) lies in X ® C}(G) for all z € X and z € C}(G);

(D2) 6x(x-a) =0x(x)-d4(a) for all z € X and a € 4;

(D3) dalalz, y) = (0x(2) , Ix(Y))M(AGmnCs (G));

(D4) ((5}( ®id)odx = (Id® dg) 0 0x.

For simplicity, suppose that C*-algebras A and K(X) are concretely represented on
Hilbert spaces H 4 and Hy, respectively. Given a § 4-compatible coaction dx of G on X,
the crossed product X x5, G of X by dx is the right (A x5, G)-Hilbert closed submodule
of M(X®CH(G)) C B(L*(Ha,G), L*>(Hk, G)) generated by the set {dx (z)(1a@My)|x €
X,f € Co(G@) }. Then the inner product on X X5, G is given in terms of the usual
operator adjoint * : B(L?(Ha, G), L*(Hx, G)) — B(L*(Hk, G), L*(Ha, G)) by

(@, Yaxs,c=a"y fora,yeX x5 G.

Let (A, G, a) be a C*-dynamical system and let A X, G be the reduced C*-crossed
product of A by G. If 4 is a faithful representation of A on a Hilbert space H, (T4 x
M, L2(H,G)) is a faithful representation of A X4, G. Then

(Fax M) @id)(6(z) = 1a @ W) (Fa x M) @id)(z @ 1)(14 @ We*)

for z € A X4, G defines a nondegenerate coaction 6 of G on A X, G, which is called a
dual coaction. Let X be a right A-Hilbert module with an a-compatible action 1 of G.
We then regard X as a K(X)-A-Hilbert module and let (7x, mx,74) be a representation
of X, where (mxc, Hi) and (w4, H 4) are representations of I(X) and A, respectively. If
7x is a faithful representation of X into B(Ha, Hx), Tx X A is a faithful representation
of X x,, G. Denote by 1x the identity of the multiplier algebra M (K(X)) for K(X).
Then a dual coaction dx of G on X x, , G is defined by

(Fx x M) @id)(6x(2)) = Ak @ W) ((Fx x M) @id)(z @ 1)(1a ® Wg*)

for v € X %, G.
3. An Alternative Proof of the First Duality Theorem

Let (A,G,a) be a C*-dynamical system and let X be an A-Hilbert module with
an a-compatible action 1 of G. Now we suppose that G is a locally compact abelian
group and we denote by G its dual group. Let (mi,mx,m4) be a representation of X,
where (74, H) is the universal representation of A. We use the notation in §2 without
comment. Now we are in a position to give a proof.

Proof of the first duality theorem. Take any x € K(X,G). Define the unitary represen-
tation U of G on L*(H,G) by

UO)(1) = <t,7 >£()



116 Masaharu KUSUDA

for v € G and ¢ € L2(H, @), where < ¢, > means the value of v at ¢. Since y(z)(t) =
<t,y >z(t), it follows from a straightforward calculation that

(@) = U,al.

Consider the faithful representation 7 x x A4 of X Xy, G and denote by A the regular
representation of G on L?(H,G x G). Then (Tx x M) x X is a faithful representation
of (X xyr G) x5, G. Here we remark that Tx x M is G-equivariant, that is,

(Fx x M) (@ (2)) = Uy (Fx x M) (@)U}

forally € G and all z € K(X,QG). In fact, we have
T M) = [ Fxlm@Eah i = [ Fx@ETSROW, &
_ /C T SFx ()M, dt = /G UFx ()N di = Uy (Fxe x M) (@)U
Let F be the isometry from L2(H, G x G) onto L2(H, G x G) defined by

(P50 = [ TETSE )y for £ K(LGxC)

Then we have

(F(7x x M) (@) F*¢)(s, 1)
/C <ty >((rx x /\A) (x)F*E)(s,) dy
= [ SETS (o % XY ) F)(517)
/G< t,y >(US(Tx x M) (x x)UyF*E)(s,7) dy
/G< ty > < 5,7 > ((Fx x M) (@)U, F*E)(s,7) dy
— [ FEA5 <sv> [ mxl @)U F € s — ko) didy
G G
— [FEA5 <sr> [ melnse) TSR S(F s - h7) dbn
G G
/ / <k—t,y>nrx(n-s(z(k )))/ <l,y > &(s — k1) dldkdry
G
= /A/ / <l—t,v>nx(n_s(x(k)))E(s — k,1 — k) dldkdry
:JGEJG
_ /wa(n_s(x(k))) /5/0 Uty > E(s— k1 — k) didvdk
- /G mx (1o ((k)))E(s — bt — ) dk
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/Wx N—s(z(E))((1 @ WE)E) (s — k,t — s) dk

Q

= [ mxs@(R) N © 1)(1L @ WEE) (s, t — ) dk

Q

(Fx x M) (2) @id)((1 @ WEE)(s,t — 5)
= (1@ We)((7x x M) (z) @id)((1 @ WE)E) (s, 1)
Thus we obtain that

F(Fx x M) (@) F* = (16 We)(Fx x M) (@) ®id)(18 Wg) = ((Fx x M) @id)(3(x))

for all z € K(X,G). For any f € L'(G), we then have

F((Fx x V)™ X) (38 f)F / FO(FGx x MY (@) F)(F(1L & X,)F*) dy

— (F(Fx x M) (2)F*)(F / FOA d)F*) = (F(Fx x M) (@) F)(1® M)
= ((Fx x M) @1d)(3(@))(1 ® M) = ((Fx x M) ® id)(3(z) (1 ® Mp)),

where f denotes the Fourier transform of f. By the definition of (X X, , G) x5 G, we
see that
FFx x M) (X % G) x5 G))F* = (X Xy, G) x5 G.

Hence it follows from the second duality theorem that (X x,, G) x5 -G = X 0C(LA(Q)),
where “2” means isomorphic. Since G is abelian (hence amenable), X Xpr G is identified
with X x, G by 7x x A (see [2, Proposition 2. 13]). Since Tx x A\ is G-equivariant,
it is not hard to show that (X x, G) x5 G~ (X Xpr G) X5 G. Thus we see that
(X x, Q) x5 G = X @ C(LAG)). O
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