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Abstract

We find refined solutions without exceptional starting points of the three problems
of the optimal stopping, the zero-sum stopping game (Dynkin’s game) and the non-
zero sum stopping game for a general symmetric Markov process under the absolute
continuity condition on the transition function.

1. Introduction

For a symmetric Markov process M on a general state space X, the solution of an
optimal stopping problem was identified by Nagai® with a quasi continuous version of the
solution of a variational inequality formulated in terms of the Dirichlet form associated
with M. This was then successfully extended to the Dynkin game (a zero sum stopping
game) by Zabczyk® and to a non-zero sum stopping game by Nagai”) (see section 2).

In each of the three types of optimal stopping problems of a symmetric Markov
process M however, certain sets N of zero capacity are involved as exceptional starting
points of M. The aim of this paper is to refine in section 3 those statements in the
cited papers by showing that they hold without any exceptional starting point under the
assumption that the transition function of M is absolutely continuous with respect to the
underlying measure m. The key step in our proof is to refine the arguments of Nagai®) by
using a positive continuous additive functional of finite potential formulated by the first
author®. The absolute continuity assumption is satisfied by many important symmetric
Markov processes including the multidimensional Brownian motion and symmetric stable
processes. ‘

Zabezyk’s work®) on the Dynkin game is of basic importance and of potential appli-
cability. For instance, it has been applied to solving a one-dimensional singular control
problem in Fukushima-Taksar?. In identifying the saddle point of the Dynkin game
however, Zabczyk® employed a well-known penalty method together with the Dirichlet
space theory. In the last section of the present paper, we will simplify this part of his
proof by showing that the penalty method can be dispensed with.
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2. Summary of Three Types of Stopping Problem

Let X be a locally compact separable metric space, m be an everywhere dense
positive Radon measure on X and M = (X, P;) be an m-symmetric Hunt process on
X. We assume that the Dirichlet form (€, F) of M on L?(X;m) is regular in the sense
that F N Co(X) is £1-dense in F and uniformly dense in Cy(X), where Cp(X) denotes
the space of continuous functions on X with compact support. There have been several
works®8):7) on optimal stopping problems for M formulated in relation to the Dirichlet
form (F,E).

In Nagai®

, It was showed that the value function of the optimal stopping problem
w(z) = sup Eyle”*g(X,)], =€ X\N,
o
is quasi-continuous version of the solution of the following variational inequality
w>g m—ae, weF, Ewu—w)>0 weF, u>g m-—ae., (1)

where g is a quasi-continuous function in F and N is an appropriate properly exceptional
set. Moreover, it holds that

w(z) = Eyle™®%g(Xs)], "z € X\N, where & =inf{t>0; w(X;)=g(Xs)}.

Zabczyk®) then extended Nagai’s result to the zero-sum stopping game (Dynkin
game) as follows: for the pay-off function

Jo(1,0) i= Eple ™) (W(X ) Li<o + 9(Xo)Ir50)], "z € X\N, (2)
the value function

v(z) = supinf J,(r,0) = infsup J.(7,0), "z € X\N, (3)

a T T o
is quasi-continuous solution of the variational inequality
g<v<h m—ae, veF, &Ev,u—v)>0 YueF, g<u<h m—a.e. (4)
and moreover, tﬁe pair (7,6) of the hitting times defined by
7=1inf{t > 0; v(Xy) = h(Xy)}, & =inf{t>0; v(Xy) =g(Xp)}, (5)
is a saddle point of the game in the sense that
Jo(T,0) < Jp(7,6) < Jy(1,6), v(x)=Ju(7,6), ze&X\N, (6)
for any stopping times 7, 0. Here g, h € F are quasi-continuous functions satisfying
g < h m—a.e., and N is an appropriate properly exceptional set.

Nagai” considered the following non-zero sum stopping game which is not necessarily
an extension of the zero-sum stopping game. Namely, for the pay-off functions defined
by

Jml (11, 72) = Em{e_a(ﬁ/\m)(gl (Xr ) ry<ry + M (X)) Irpsmy )]s

9 —a(riAT2) x € X\N,
Jz(7_177_2) = Eﬂﬂ[e HTAT2 (g2(X7'2)I7'2§T1 + hQ(XTl)I7'1>7'2)]7
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and for the quasi-continuous solutions (1, %i2) of the quasi-variational inequality

ur > g1V Ua(h1) Blug,go) M—a-€,  Ealur,v—u1) >0 Yo > g1V Ua(h1) B(ug,g;) M—a-€.,
Uus > go V Ua(hg)B(ul,gl) m—a.e., Eulug,v—uz) >0 Vo> ga V Ua(h'Q)B(ul,gl) m—a.e.,
(7)
it was shown”) that the pair (11, 75) of hitting times defined by
r=inf{t >0: 4;(Xy) =g:(Xe)}, i=1,2,

is under some hypotheses (see subsection 3.3) a Nash equilibrium point of the non-zero

sum stopping game with pay-off functions J}, J2? in the following sense:

ai(x) = Ji(m,73), Yz e X\N, i=1,2,
JHrE ) > M, 1), Yz e X\N, Vr: stopping time,

Jf(TfTék) > Jg(Tf,Tg), Vo e X\N, Voo stopping time.

Here, g;, h; € F are quasi-continuous functions satisfying that g; < h; m—a.e., and N
is an appropriate properly exceptional set. Uy(hy) is the least a-potential majorizing
hy and Uy (h1) B(ug,g,) 18 the a-reduced function of Us(h1) on the set B(us, g2) = {z €
X 1 Uy = go}, U2, go denoting the quasi-continuous versions. Ua(h2)p is similarly

defined.

u1,91)

3. Refined Solutions of Stopping Problems

Let X, m, M = (X4, P;) and (£, F) be as in section 2. Denote by Xa the one point
compactification of X. We extend any numerical function v on X to Xa by setting
u(A) = 0. In this section we assume the absolute continuity condition for the transition
function p; of M:

pe(z, ) K m, (8)

forallt > 0 and z € X.

We will fix an o > 0. A universally measurable function f on X taking value in
[0, 00] is called a-excessive if f(z) > 0 and e~ *p, f(z) 1 f(z), t | 0, for each z € X. A
function f € F is said to be an a-potential if £,(f,¢) > 0 for any non-negative g € F.
For any a-potential f € F, the pointwise limit f(m) = limy g pe f(2)(< 00), ¢ € X, exists
and we see that f = f m-a.e. and that f is o-excessive. f is called the a-excessive
regularization of f.

3.1 The optimal stopping problem We assume that ¢ is a finely continuous
function on X such that g € F and

9(z)| < (), z€X, 9)

for some finite a-excessive function ¢ on X.
It is known that the variational inequality (1) admits a unique solution w which is
actually the least a-potential majorizing the function g m-a.e.
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Theorem 1. Let w be the solution of (1) and W be the a-excessive reqularization of w.
Then w is finite and

w(x) =sup Ezle 7 9(X,)], "z e X. (10)
Moreover, if we let & = inf{t > 0; w(X:) = g(X¢)}, then
W(z) = Exle*g(Xs)], "zeX. (11)

Proof First we show that w is finite. By virtue of Theorem 2.2.1 and Lemma 2.3.2 of
the book®, we see that ¢ A is an a-potential in F. Since  is the smallest a-potential
majorizing g, we obtain w < p Aw < ¢, m—a.e. But both @ and ¢ are a-excessive and
w(z) < p(z) < oo, z € X, yielding the finiteness of .

Next we prove the inequality

w(z) > g(x), ze€X. (12)

Since w > g m-a.e. we have pyw(z) > pig(z), "z € X, t > 0, and consequently it
suffices to show that

limpig(@) = g(z), o€ X. (13)

Fix x € X. Since ¢ > 0 and lim¢jo E.[@(X:)] = limejoprp(x) = ¢(z) = Exlo(Xo)],
the family of random variables {¢(Xy), t € (0,1)} is uniformly integrable with respect
to Py, and so is the family of random variables {g(X:), ¢t € (0,1)} on account of the
assumption (9). Since g(X;) converges to g(Xo) ast | 0 Py-a.s., the L'(P,)-convergence
takes place, yielding (13)

We now turn to the proof of (10) and (11). Since w is an a-potential, there exists a
positive Radon measure 1 of finite energy integral such that,

Eali, ) = /X f@)u(dz), f € FnCo(X). (14)

Therefore, we have w(z) = Rou(z), "o € X, where Rou(z) is defined by the integral
Jx ra(z, y)u(dy) in terms of a suitable resolvent density {rq(z,y)} and Rqp is known to

be a-excessive (see Problem 4.2.1 of the book®. In particular, R,u(z) is finite for any

x € X. Hence y is in the class®

So1 = {p : positive Radon, // ri(z, y)pu(dz)p(dy) < oo, Riu(z) < oo, "z € X}.

Therefore®), there exists a positive continuous additive functional (PCAF) A, in the
o9}
strict sense such that w(x) = E,| / e dAy] for all z € X. By the strong Markov

0
property, we have for any stopping time o

(z) = By / e~ d A + Eyle (X)), (15)
0
which combined with (12) implies w(z) > Eyle”*w(X,)] > Ez[e"* g(X,)]. Therefore

w(x) > sup E e *g(X,)], =e€X. (16)
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Finally we set B = {z € X; w(z) = g(z)}. Since (14) holds for any finely continuous

(and hence quasi-continuous) function f € F, we have (w(z) — g(x))p(dx)
Bec

= [ (w(x)—g(x))p(dz) = E4(w, w — g), which must vanish because w is an a-potential

Whil)é (1) holds for u = g. Therefore, we get u(B¢) =0 by (12). Hence we get
E.| /0 b e M Ipe(Xy)dA] = Ro(Ipep)(z) =0, z € X.
Thus, for any stopping time o < &,
0< Eg,;[/o(r e dAy < Eub[/oC>C e~ Ipe(Xy)dA:] =0, € X.

Consequently, we are led to (11) by putting 0 = ¢ in (15). (11) and (16) implies (10).

]

3.2 The zero-sum stopping game Let g, h € F be finely continuous functions
such that for all z € X,

9(z) < h(z), lg(x)| < p(z), |h(z)| < ¥(z), (17)

where ¢, ¥ are some finite a-excessive functions. For arbitrary pair of stopping times
(1,0), let J, be the payoff function defined by

Jp(1,0) = Ex[e_o‘(”\”)(h(XT)ITSU +9(Xo)rs5)], z€X.

By the above assumption, J;(7,0) is finite. We consider the following condition:
there exist finite a-excessive functions vy, vo € F such that, for all z € X,

9(x) < vi(x) = va(a) < h(z). (18)
It is known that the variational inequality (4) admits a unique solution .

Theorem 2. Assume condition (18). There exists a finite finely continuous function
v, x € X, satisfying the variational inequality (4) and the identity

0(x) = supinf Jy(7,0) = inf sup J(7,0), =z € X, (19)

o T o

where o, T range over all stopping times. Moreover, the pair (7,6) defined by
7=inf{t > 0; 9(X¢) =h(Xy)}, & =inf{t >0; 9(X,) =g(Xy)},
is the saddle point of the game in the sense that

Jo(7,0) < Jp(,6) < Jo(1,6), =z €X, (20)

for all stopping times 7, o.
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Let 7 and © be a-excessive regularizations of 7 and v which solve the variational
inequalities (27) and (28) in §4, respectively. Then, (29) implies

v (z) >0(x), wva(z) >d(x), =€X. (21)

Since limgjo pig(z) = g(x), hmtlopth( x) = h(x), x € X, as we saw in the preceding
subsection, we further have 0 > 9 +g¢, > U — h. In particular ¥ and ¥ are finite, and
the difference o = T — ¥ is a finite finely continuous function on X. In view of Corollary
to Proposition 1 of Zabczyk®), # is the unique solution of the variational inequality (4)
and satisfies

g(z) <v(z) < h(z), zelX. (22)

Proof of Theorem 2 By (21), we have

o+l <htlgl<vateo, —hl <V+[B <01+,
and we can apply Theorem 1 in obtaining, for any = € X,

B5(e) = sup Fale ™7 (14 6) (X0)] = Fale ™ 2+ 6) (X5,

(
6 =inf{t > 0; T(Xy) = (0 + 9)(X¢)} = inf{t > 0; (X)) = g(Xp)},
z) = sngm[e“”@— W)(X7)] = Bple™® (v — h)(X5)],
)=

7 =inf{t > 0; A(Xy) = (- h)(Xe)} = inf{t > 0; 9(X;) = h(Xp)}.

On account of the proof of Theorem 1, we have, for any stopping times ¢ < 6 and 7 < 7,
%(35) = Em[e_aU%(XU)]a Uz) = Egle”*0(X7)]-

Since {e *v(X;)} and {e~*v(X;)} are non-negative P,-supermartingales for each = €
X, we get for arbitrary stopping times 7 and o, and z € X,

U(x) > Eule™0(Xo)],  (z) > Egle™ T 0(X,)].
Therefore, we obtain for each x € X

(x) = v(z) — Uz) < Bl _a(UAT)%(X Al = Ew[e_a(UAT)U(XU/\T)]
= Ey[e N o(Xp00)] € Eule O (g(X5) [s<r + WX, ) r<5)] = Ju(T,6),

where we have used (22). Similarly, we have 0(z) > J,(7,0), z € X.
Thus J,(7,0) < 0(x) < Jo(7,6), x € X, which implies (19) and (20).
L

Remark 1. We are unable to prove Theorem 2 without separability condition (18) for
obstacles g, h. As was shown by Zabczyk®, the solution v of the variational inequality
(4) can be approximated by solutions v, corresponding to obstacles satisfying the sep-
arability condition. But the convergence takes place in the Dirichlet form, which does
not imply the pointwise convergence without exceptional set in general.
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3.3 Non zero-sum stopping game We shall also present a refined statement for
the non-zero sum stopping game. We omit the proof because it can be readily carried

out based on Theorem 1.
We assume g;, h; € F are finely continuous functions satisfying that

gi(@) < hi(z), |gi(x)| < @ilz), [hi(z)] <¢ifz), =X,

where @;, 1; are finite a-excessive functions, i = 1,2. For any pair of stopping times
(11, 72), let JL, J2 be the pay-off functions defined by

Jé (T1,72) = Ey [6*(1(‘“/\72)(91 (X ) Ir<ry + h( Xy ) Iry<ry)]s
Jg(ﬁﬂ—?) = Eﬂ?[eﬁa(n/\m)(92<X72)I7‘2§T1 + h2(XT1)I7'1<7'2)]7
for all z € X respectively. By the above assumption, J (7, 72), i = 1,2, are finite. We

assume the following:

— —

(1€X: Usg) =g} Clx e X: Ualhy)=h;}, i,j=1,2 i#j  (23)
It is known that the solutions of (7) are a-potentials in F.
Theorem 3. Let (ui,u2) be solutions of quasi-variational inequality (7), and we define

i=1,2.

’

rr=1inf{t > 0: 4;(X¢) = g:(Xe)}
Then, under the condition (23), (11,75) is the Nash equilibrium point of the non-zero
sum stopping game with pay-off functions J, J2 in the following sense: for any x € X,
J(x) = Ji(r,73), i=1,2,
Y, 73), Vr: stopping time,
15, 7), T : stopping time.

4. Alternative Proof of (6)

In this section, under the setting for the Dynkin game in section 2, we present a
simplification of the proof of (6) given in Zabezyk®. Let g, h € F be quasi-continuous
functions satisfying the inequality

g9(x) < h(z) qe (24)

We note that, as solutions of (1) for |g| and |h|, there exist quasi-continuous a-potentials
o and ¥ € F such that

9(@)] < p(x), [h(z)] <Y(z) ge. (25)

The obstacles g, h are said to satisfy the separability condition if there exist a-potentials
v1, v9 € F such that
g<wvy—vy<h m—a.e. (26)

Zabezyk® has proceeded to the proof of (6) based on the next two assertions.



108 Masatoshi FUKUSHIMA and Keisuke MENDA

1. Under the condition (26), there exists a pair (7,v) € F x F satisfying the quasi-
variational problem

V>20+g Eu@u—7)>0 "u>vtg, ueF, (27)
v>T—h Evu—v) >0 Yu>T—h, uc F. (28)

They satisfy
v1>T, Vs> U Mm—a.e. (29)

and the difference v = 7 — v is the unique solution of the problem (4).

2. there exist the sequences {gn}n, {hn}n of quasi-continuous functions satisfying
following conditions: g, increases to g q.e. and in (&,,F), h, increases to h q.e. and
in (4, F), gn < hp m-a.e.  and each pair (gn, hy,) satisfies the separability condition
(26). Denote by v (resp. vy,) the solution of the variational problem (4) for the obstacles
g, h (resp. gn, hy). Then v, — v in (E,, F).

We are now ready to give an alternative proof of (6). We assume that v, and v are
quasi-continuous already. By taking a subsequence if necessary, we may assume that
the convergence takes place quasi-uniformly, namely, there exists increasing sequence of
closed sets { X} with limg_,o Cap(X — Xi) = 0 such that the following convergence is
uniform on each Xj:

va(7) = (&), gul®) = g(&),  ha(z) — h(z). (30)
We introduce the hitting times defined by 7, = inf{t > 0: v(X;) +v > h(Xy)},
oy =inf{t >0: v(Xy)—y < g(Xy)}, T =inf{t >0: Xy € X\ Xy}, v>0,k=1,2,---.

We may assume that P, (T 1 o0) =1 g.e..
It suffices to show that

v(z) < Exle” *Tv(X,)], v(z) > Exle” *v(X,)], (31)

for arbitrary stopping times 7 and o such that ¢ <7 and 7 < & P, —a.e. and x € X\N,
where & and 7 are hitting times defined by (5) and N is a properly exceptional set.
In fact, we get from (31),

v(z) = Eyle T y(Xpp5)] = Jo(7,8).
By (31) again, we have for any stopping time o
To(#,0) = Exle™ h(Xs) <o + €7 g(Xo) lrar] < Byle T V0(X50,)] < 0(z),

since g < v g.e. In the same way, we have J;(7,5) > v(z) for any stopping time 7.
By virtue of 1, 2 and Nagai®., we have v,, = 7, — v, with

Tn(x) = sup Ezle™ (v, + 9n)(Xo)] = Bale (v, + 9n)(X5,)], g€ w € X,

Gp, = inf{t > 0; T,(Xt) = (v, + gn)(Xe)} = inf{t > 0; vp(Xt) = gn(X4)},
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U

(x) = sup E e (T — hp)(X;)] = Erle ™ (Tp — hn)(X3,)], gqe. x € X,
T = inf{t > 0; v,(Xt) = (Un — hn)(Xp)} = inf{t > 0; v, (Xy) = hp(Xe)}

Therefore, by a similar argument to that of Nagai® , we can find a properly exceptional
set IV such that, for all ¢ < 6, and all 7 < 7,,, we have

Up(z) = Exle ™ 0,(Xs)],

n

(z) = Egle” "0, (X7)],

Ty

for all 2 € X\N. Furthermore, for all initial states * € X\ N, processes {e~*v,(X;)}
and {e~“y,(X};)} are non-negative P,-supermartingales. Thus, for arbitrary stopping
times 7, o, and z € X\ N, we obtain

Un(7) 2 Eele”*Tn(Xo)l,  0,(2) = Eyle™ 0, (X7)].
Hence, for all x € X\N, v,(x) = v,(z) — v,(z) is dominated by
Byl T, (Xo,nr)] = Bale™ "Dy (Xo,07)] = Exle™ " v (Xo,00)]-
In particular, we have for all 7 < &,
vn(z) < Eyle™*vn(X;)], € X\N.
Similarly, we have for all o < 7,
vn(z) > Eple v, (Xs)], x € X\N. (32)

Now let us prove (31). Take any v > 0 and fix k. According to (30), there exists p
such that for all n > p,

on(2) — v(z)| < % (@) — h(z)| < % z € X
If t < 7y, then v(X;) +v < h(X¢). So, for all t < 7, ATy A o, we obtain
un(Xp) < v(Xe) + % < h(Xy) — % < ha(X0).
Hence 7, AT, Ao < 7, and we have by (32),
vn(2) > Eyple ™Ay (X0 apona)]s @ € Xi (33)
On the other hand, |v| < ¢ + 1 g.e. by (25), and we may assume that

on(@)] < 0(z) +P(@) + 2, =€ X

2 2
By Lebesgue convergence theorem, we can let n — oo in (33) to obtain

v(z) > Em[e—a(Tw/\Tk/\U)«U(XTW/\Tk/\U)]? z € Xg. (34)

Since for quasi-continuous function v € F, {e"*Tu(X7) : T is a stopping time} is P;-
uniformly integrable as was shown in Lemma. 5 of Zabczyk®, we have by letting k — oo,
v(x) > Ew[e’a(”/\”)v(XTwa)]. Letting v | 0, we obtain by the quasi-left continuity of
X; and the quasi-continuity of v, the inequality v(z) > E, [e*a('?/\”)v(XMU)], completing
the proof of (31). O
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