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Abstract 

We find refined solutions without exceptional starting points of the three problems 

of the optimal stopping, the zero-sum stopping game (Dynkin's game) and the non-
zero sum stopping game for a general symmetric Markov process under the absolute 

continuity condition on the transition function. 

1. Introduction 
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For a symmetric Markov process M on a general state space X, the solution of an 

optimal stopping problem was identified by Nagai6) with a quasi continuous version of the 

solution of a variational inequality formulated in terms of the Dirichlet form associated 

with M. This was then successfully extended to the Dynkin game (a zero sum stopping 

game) by Zabczyk8) and to a non-zero sum stopping game by Nagai7) (see section 2). 

In each of the three types of optimal stopping problems of a symmetric Markov 

process M however, certain sets N of zero capacity are involved as exceptional starting 

points of M. The aim of this paper is to refine in section 3 those statements in the 

cited papers by showing that they hold without any exceptional starting point under the 

assumption that the transition function of Mis absolutely continuous with respect to the 

underlying measure m. The key step in our proof is to refine the arguments of Nagai6) by 

using a positive continuous additive functional of finite potential formulated by the first 

author3). The absolute continuity assumption is satisfied by many important symmetric 

Markov processes including the multidimensional Brownian motion and symmetric stable 

processes. 

Zabczyk's work8) on the Dynkin game is of basic importance and of potential appli-

cability. For instance, it has been applied to solving a one-dimensional singular control 

problem in Fukushima-Taksar4). In identifying the saddle point of the Dynkin game 

however, Zabczyk8) employed a well-known penalty method together with the Dirichlet 

space theory. In the last section of the present paper, we will simplify this part of his 

proof by showing that the penalty method can be dispensed with. 
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2. Summary of Three Types of Stopping Problem 

Let X be a locally compact separable metric space, m be an everywhere dense 

positive Radon measure on X and M = (Xt, Px) be an m-symmetric Hunt process on 

X. We assume that the Dirichlet form (£, :F) of Mon L2(X; m) is regular in the sense 

that :F n Co(X) is£1-dense in :F and uniformly dense in Co(X), where Co(X) denotes 
the space of continuous functions on X with compact support. There have been several 

works6),s),7) on optimal stopping problems for M formulated in relation to the Dirichlet 

form (:Fぷ）．
In Nagai6), It was showed that the value function of the optimal stopping problem 

w(x) = sup Ex[e―aびg(Xり], x E X¥N, 

is quasi-continuous version of the solution of the following variational inequality 

w :2': g m-a.e., w E左品(w,u-w)こ0 vu E F, u :2': g m -a.e., (1) 

where g is a quasi-continuous function in F and N is an appropriate properly exceptional 

set. Moreover, it holds that 

w(x) = Ex[e―a& g(X&)], v x E X¥N, where a-= inf{ t > O; w(ふ） =g(ふ）｝．

Zabczyk8) then extended Nagai's result to the zero-sum stopping game (Dynkin 

game) as follows: for the pay-off function 

lx(T, a-):= Ex[e―a(T八er)(h(X7)17さ;er+g(Xび）IT>び）], vx E X¥N, (2) 

the value function 

v(x) = sup inf Jx(T,O') = infsupJx(T,O'), Vx E X¥N, (3) 
T T CY CY 

is quasi-continuous solution of the variational inequality 

gさv::;; h m-a.e., v E F, 品(v,u -v) 2: 0 vu E F, g::;; u::;; h m-a.e. (4) 

and moreover, the pair (f, &) of the hitting times defined by 

テ=inf { t > 0; V (ふ） = h(ふ）} , IJ = inf { t > 0; V (ふ） =g(ふ）}, (5) 

is a saddle point of the game in the sense that 

Jx(テ，Cl)::S: Jx(テ，&)::S: Jx(T,&), v(x) = lx(テ，&), x E X¥N, (6) 

for any stopping times T, び. Here g, h E :F are quasi-continuous functions satisfying 

g :::;; h m-a.e., and N is an appropriate properly exceptional set. 

N agai7) considered the following non-zero sum stopping game which is not necessarily 

an extension of the zero-sum stopping game. Namely, for the pay-off functions defined 

by 
J』(T1,T2) = Ex[e-a(Ti八T2)(g1(XT1)IT1~T2 + h1(XT2)IT2>T1)], 
J;(T1, T2) = Ex[e-a(Ti 八T2)(g2(XT2)IT2~Tl + h2(XT1)IT1>T2)], 

x E X¥N, 
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and for the quasi-continuous solutions (fi1, 妬） of the quasi-variational inequality 

町 2::91 Vい(h1)B(u公92)m-a.e., 品(u1,v -u1) 2:: 0'<:Iv 2:: 91 V Ua(h1)B(uか92)m-a.e., 

四ミ 92Vい（加）B(u1,g1) m-a.e., 品(1位，v-四） 2:: 0 V V 2:: 92 V U a (加）B(u1,g1) m-a.e., 

(7) 

it was shown 7) that the pair (Ti, 弓） of hitting times defined by 

Tt = inf{ t > 0 : ui(Xt) = 9i(ふ）}, i = 1, 2, 

is under some hypotheses (see subsection 3.3) a Nash equilibrium point of the non-zero 

sum stopping game with pay-off functions ,7』,J;; in the following sense: 

叫x)=ん(T「け）， vxE X¥N, i = 1,2, 

心(T{,弓） 2:: J; (T]ー，弓）， vxE X¥N v 可： stopping time, 

壮(T{,弓）こ： J;(T;, 乃）， VxE X¥N V ，乃： stopping time. 

Here, gi, hi E F are quasi-continuous functions satisfying that 9i三him-a.e., and N 

is an appropriate properly exceptional set. Ua(hりisthe least a-potential majorizing 

h1 and Ua(h1)B(u2,g2) is the a-reduced function of Ua(hりonthe set B(u2, g刃={x E 
x:- -}- -四=92'uか g2denoting the quasi-continuous vers10ns. Ua(加）B(u隅 1)is similarly 

defined. 

3. Refined Solutions of Stopping Problems 

Let X, m, M = (Xt, Px) and(£, :F) be as in section 2. Denote by X△ the one point 

compactification of X. We extend any numerical function u on X to X△ by setting 

叫△） = 0. In this section we assume the absolute continuity condition for the transition 

function Pt of M: 

Pt(x, ・) << m, (8) 

for all t > 0 and x E X. 

We will fix an a > 0. A universally measurable function f on X taking value in 

[O, oo] is called a-excessive if f(x) 2 0 and e-atPtf(x)↑ J(x), t↓ 0, for each x E X. A 

function f E Fis said to be an a-potential if~a(f, g) 2 0 for any non-negative g E万

For any a-potenti叫fE左 thepointwise limit f (x) = limt↓ oPtf(x)(:'.S oo), x EX, exists 

and we see that f = f m-a.e. and that J is a-excessive. J is called the a-excessive 

regularization of f. 

3.1 The optimal stopping problem 

function on X such that g E F and 

We assume that g is a finely continuous 

g(x)~cp(x), x EX, (9) 

for some finite a-excessive function c.p on X. 

It is known that the variational ineq叫 ity(1) admits a unique solution w which is 

actually the least a-potential majorizing the function g m-a.e. 
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Theorem 1. Let w be the solution of (1) and心 bethe a-excessive regularization of w. 

Then w is finite and 

叫x)= supEx[e―aびg(ふ）], vxEX. 
(J' 

Moreover, if we let & = inf{ t > O; w(ふ） =g(ふ）}, then 

訓x)=に[e―ao-g(ふ）], vxEX. 

(10) 

(11) 

Proof First we show that心 isfinite. By virtue of Theorem 2.2.1 and Lemma 2.3.2 of 
the book5), we see that cp八心 isan a-potential in万 Since心isthe smallest a-potential 

majorizing g, we obtain心:=:;cp八心:=:;cp, m-a.e. But both心andcp are a-excessive and 

訓X):::; ゃ(x)< oo, x EX, yielding the finiteness of紅

Next we prove the ineq叫 ity

訓x)2:: g(x), x EX. (12) 

Since w 2:: g m-a.e. we have PtW(x) 2:: Ptg(x), vx E X, t > 0, and consequently it 

suffices to show that 

佃Pt9(x)= g(x), x EX. (13) 

Fix x E X. Since cp 2:: 0 and limtlO E心（ふ）)= lim札oPtcp(x) = cp(x) = E心 (Xo)),

the family of random variables { cp(Xt), t E (0, 1)} is uniformly integrable with respect 
to Px, and so is the family of random variables {g(ふ）， tE (0, 1)} on account of the 
assumption (9). Since g(Xリconvergesto g(Xo) as t↓ 0 Px-a.s., the L1 (Px)-convergence 

takes place, yielding (13) 

We now turn to the proof of (10) and (11). Since w is an a-potential, there exists a 

positive Radon measureμof finite energy integral such that, 

品（嵐f)= j f(x)μ(dx), f E :F n Co(X). 
X 

(14) 

Therefore, we have心(x)=似μ(x), vx EX, where R。μ(x)is defined by the integral 

fx八 (x,y)μ(dy) in terms of a suitable resolvent density {ra(x叫}and R。μisknown to 

be a-excessive (see Problem 4.2.1 of the book砂 Inparticular, R叫叫 isfinite for any 

x E X. Henceμis in the class3) 

s。1= {μ: positive Radon, j j r1(x, y)μ(dx)μ(dy) < oo, R1μ(x) < oo,'Ix EX}. 

Therefore3), there exists a positive continuous additive functional (PCAF) At in the 
00 

strict sense such that心(x)= Ex[j e―"'dA,] for all x E X. By the strong Markov 
o. 

property, we have for any stopping timeび

゜心(x)= Ex[j e―"'dA,] + Ex[e―aびW(ふ）］，

゜
(15) 

which combined with (12) implies 心(x)~Ex[e-aび心（ふ）]~Ex[e-aag(ふ）] • Therefore 

訓x)2 supE叶e―a<Yg(X叶], x EX. (16) 

゜
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Finally we set B = { x E X; w (x) = g (x)}. Since (14) holds for any finely continuous 

(and hence quasi-continuous) function f E :F, we have j 国(x)-g(x))μ(dx) 

=! 国(x)-g(x))μ(dx) =品(w,w-g), which must van;:h because w is an a-potential 
X 

while (1) holds for u = g. Therefore, we getμ(Be) = 0 by (12). Hence we get 

CX) 

Ex[j e―c,t伍（ふ）叫＝恥(Iwμ)(x)= 0, x EX. 

゜Thus, for any stopping timeけ sa-, 

0 <; E』lae―"'dAバ<;Ex[fo00 e―od伍（ふ）dA,l = 0, x EX. 

Consequently, we are led to (11) by putting a-= a-in (15). (11) and (16) implies (10). 

ロ

3.2 The zero-sum stopping game 

such that for all x E X, 

Let g, h E F be finely continuous functions 

g(x)三h(x), lg(x)I~cp(x), lh(x)I~ い(x), (17) 

where rp, 心aresome finite a-excessive functions. For arbitrary pair of stopping times 

(T, O'), let Jx be the payoff function defined by 

Jx(T,CJ') := Ex[e―a(T八(Y¥h(XT)ITご;(Y+ g(Xび）IT><Y)], X E X. 

By the above assumption, lx(T, a-) is finite. We consider the following condition: 

there exist finite a-excessive functions v1, 四 E:F such that, for all x EX, 

g(x)~v1(x) -v2(x)さh(x). (18) 

It is known that the variational inequality (4) admits a unique solution v. 

Theorem 2. Assume condition (18). There exists a finite finely continuous function 

v, x E X, satisfying the variational inequality (4) and the identity 

訓x)= sup inf Jx(T,O") = infsupJx(T,O"), x EX, (19) 
T T CT CT 

whereび， Trange over all stopping times. Moreover, the pair (テ，句 definedby 

テ=inf{t > O; v(ふ） = h(Xリ}, ff = inf { t > 0; v (ふ） = g(ふ）｝，

is the saddle point of the game in the sense that 

Jx(テ，a-):=:; Jx(テ，8-):=:; Jx(T,8-), XE X, (20) 

for all stopping times T, O'. 



106 Masatoshi FUKUSHIMA and Keisuke MENDA 

Let令andiz be a-excessive regularizations of万 andJl. which solve the variational 

inequalities (27) and (28) in§4, respectively. Then, (29) implies 

v1(x)~ 方(X), V2 (X)~iz(X), X E X. (21) 

Since lim几oPtg(x) = g(x), lim且oPth(x)= h(x), x E X, as we saw in the preceding 

subsection, we further have令2:i2+g, 122: 令— h. In particularもand_i2 are finite, and 

the difference v =令— _i2 is a finite finely continuous function on X. In view of Corollary 

to Proposition 1 of Zabczyk8), v is the unique solution of the variational inequality (4) 

and satisfies 

g(x):::; v(x)さh(x), x EX. 

Proof of Theorem 2 By (21), we have 

位十91さiz+191さV2+ cp, 忙-hi :::; も+lhl :::; V1十心，

and we can apply Theorem 1 in obtaining, for any x EX, 

方(x)= supEx[e―aび(iz+ g)(X』=Ex[e―a鸞+g)(ふ）］，

゜& = inf{t > O; 方（ふ） = (i! 十 g)(ふ）} = inf{t > O; も（ふ） = g(ふ）｝，

i!(x) = supEx[e-a7(方-h)(Xr)]=Ex[e―0万— h)(ふ）］，

テ=inf{ t > O; y_(Xリ＝（土 h)(ふ）} = inf { t > 0; v (ふ） = h(ふ）｝．

(22) 

On account of the proof of Theorem 1, we have, for any stopping times (J" :s; fJ and T :s; た

訓x)= Ex[e―°吋(Xa-)l,狐(x)= Ex[e―a万（ふ）］．

Since { e-at万(Xリ}and {e-aり（ふ）} are non-negative Px-supermartingales for each x E 

X, we get for arbitrary stopping times T and a-, and x EX, 

令(x)~E叶e―(Y(J'方(X(J')], 孔(x)~E叶e―a万（ふ）］．

Therefore, we obtain for each x EX  

も(x)=方(x)-y_(x)ご:Ex[e―a(a八r)令(Xa/¥r)]-Ex[e―a(a八r)礼(Xa/¥r)]

= Ex[e―a(a/¥r)v(Xa八T)]:Sに[e―a(a/¥r)(g(ふ）Ia<r + h(ふ）Ir~a)] = J土畜），

where we have used (22). Similarly, we have v(x) 2: Jx(元O"), XE X. 

Thus Jx(テ，O"):S v(x) :'.S Jx(T,o-), x EX, which implies (19) and (20). 
D 

Remark 1. We are unable to prove Theorem 2 without separability condition (18) for 

obstacles g, h. As was shown by Zabczyk8), the solution v of the variational inequality 

(4) can be approximated by solutions Vn corresponding to obstacles satisfying the sep-

arability condition. But the convergence takes place in the Dirichlet form, which does 

not imply the pointwise convergence without exceptional set in general. 
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3.3 Non zero-sum stopping game We shall also present a refined statement for 

the non-zero sum stopping game. We omit the proof because it can be readily carried 

out based on Theorem 1. 

We assume 9i, hi E :Fare finely continuous functions satisfying that 

叫X)::; 九(x), lgi(x) ::; 凸(X)' I hi (X) I三仰(x), x EX, 

where五屈 arefinite a-excessive functions, i = 1, 2. For any pair of stopping times 

(TI, 乃）， letJ1, J; be the pay-off functions defined by 

J~(TI, T2) = 1え[e―a(Tl八乃）(g1 (XTl)I百 ::::;T2+ h1 (XT2)IT2<T1)], 
J';;(T1, T2) = Ex[e―a(Tl八72)(g2 (XT2)I乃 :::;Tl+ h2 (XTl)I Tl <T2)], 

for all x E X respectively. By the above assumption, Ji (T1, T2), i = 1, 2, are finite. We 

assume the following: 

{xEX: u:Ji:>=叫 c{xEX:uJ匂＝如}, i,j = 1, 2, i # j. (23) 

It is known that the solutions of (7) are a-potentials in万

Theorem 3. Let (u1墨 2)be solutions of quasi-variational inequality (7), and we define 

可=inf{t > 0: 仏（ふ）＝叫Xリ}, i = 1, 2. 

Then, under the condition (23), (Ti, 弓） is the Nash equilibrium point of the non-zero 

sum stopping game with pay-off functions Jl, 壮inthe following sense: for any x E X, 

妬(x)= J~(T{, 弓）， i= 1, 2, 

心(T{,弓） ~J;(*)冗 T2'
V 
可： stopping time, 

互(T{,吋）こ壮(* ) V 町，乃，乃： stopping time. 

4. Alternative Proof of (6) 

In this section, under the setting for the Dynkin game in section 2, we present a 

simplification of the proof of (6) given in Zabczyk8). Let g, h E :F be quasi-continuous 

functions satisfying the inequality 

g(x) S h(x) q.e. (24) 

We note that, as solutions of (1) for lgl and lhl, there exist quasi-continuous a-potentials 

<.p and 1/; E :F such that 

lg(x)I:::; cp(x), lh(x) :::; 心(x) q.e. (25) 

The obstacles g, hare said to satisfy the separability condition if there exist a-potentials 

釘，四 E:F such that 

g :S v1 -v2 :S h m-a.e. (26) 

Zabczyk8) has proceeded to the proof of (6) based on the next two assertions. 
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1. Under the condition (26), there exists a pair (豆y_)E F x F satisfying the quasi-
variational problem 

They satisfy 

万2:12+g 品（瓦 Uーで） 2::0 vuミJ2+ g, u E :F, 

gミv-h 品(12,U --12) 2: 0 VU 2: 万— h, u E :F. 

釘 2豆 v22:: JZ m-a.e. 

and the difference v =万-J!. is the unique solution of the problem (4). 

(27) 

(28) 

(29) 

2. there exist the sequences {gn}n, {加}nof quasi-continuous functions satisfying 

following conditions: 9n increases to g q.e. and in (ふ，F), 加 increasesto h q.e. and 

in (ふ，F),9n :S加 m-a.e. and each pair (gn, 加） satisfies the separability condition 

(26). Denote by v (resp. vn) the solution of the variational problem (4) for the obstacles 

g, h (resp. 9n, h叶.Then Vn→ Vin (ふ，F).

We are now ready to give an alternative proof of (6). We assume that Vn and v are 

quasi-continuous already. By taking a subsequence if necessary, we may assume that 

the convergence takes place quasi-uniformly, namely, there exists increasing sequence of 

closed sets {ふ}with limk→ 00 Cap(X —ふ） = 0 such that the following convergence is 

uniform on eachふ：

Vn(x)→ v(x), 9n(x)→ g(x), 加(x)→ h(x). (30) 

We introduce the hitting times de且nedby T'Y = inf{t > 0: v(ふ） +, ミh(Xリ｝，

叫=inf { t > 0 : v (Xリ―'::;g(ふ）｝，九=inf { t > 0 : Xt E X¥ふ},, > o, k = 1, 2, .... 

We may assume that Px(Tk↑ oo) = 1 q.e .. 

It suffices to show that 

v(x)さEx[e―aTv(XT)], v(x)2:Ex[e―aav(X。)］， (31) 

for arbitrary stopping times T and a-such that a-::; テandT ::; 8-Px -a.e. and x E X¥N, 

where 8-andテarehitting times defined by (5) and N is a properly exceptional set. 

In fact, we get from (31), 

v(x) = Ex[e―a(f/¥8-)v(Xテ八&)]=Jx(テ，a-).

By (31) again, we have for any stopping time a-

Jx(f,a-) = Ex[e―a令h(XけI区 CT+e―aびg(ふ）le,<月::; Ex[e―a(テ厄）v(Xテ八び）］さ v(x),

since g::; v q.e. In the same way, we have Jx(T, 句ミ v(x)for any stopping time T. 

By virtue of 1, 2 and N agai6¥ we have Vn =瓦一りnwith 

固 (x)= s〗pE叶e―aび儡+9n)(ふ）] = Ex[e―aむ国+9n)(X&n)], q.e. x EX, 

ff n = inf { t > 0; 万n(Xリ＝儡+9n)(ふ）} = inf{t > O; Vn(ふ） =gn(ふ）｝，
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島(x)= sりpに [e―O'.T(加―加）（ふ）] = Ex[e―afn(瓦ー加）（立）], q.e. x EX, 

テn= inf { t > 0; 12n (X t) = (瓦―加）（ふ）}=inf{t>O; Vn(ふ）＝加（ふ）｝．

Therefore, by a similar argument to that of Nagai6), we can find a properly exceptional 

set N such that, for allび :s;&n and all Tさ盆 wehave 

万n(x)= Ex[e-aCYvn(X孔], Jln(x) = E叶e―CYT島（ふ）］，

for all x E X¥N. Furthermore, for all initial states x E X¥N, processes { e-at加（ふ）｝

and {e-atりn(ふ）} are non-negative Px-supermartingales. Thus, for arbitrary stopping 

times T, び， andx E X¥N, we obtain 

瓦(x)~ に[e―0:0'瓦(XO')], 島(x)~ 此 [e―a□ Xr)]. 

Hence, for all x E X¥N, v土）＝加(x)-J!.n(x) is dominated by 

Ex[e―a(&-n/¥T)万n、(X&-n/¥T)]-Ex[e―a(&-n/¥T) J!.n (X&-n八T)]= Ex[e―a(&-n八T)vn(X&-n/¥T)].

In particular, we have for all T'.'.Sむ

狐 (x)'.'.Sに [e―QTVn(ふ）], x E X¥N. 

Similarly, we have for all (J''.'.Sテn

Vn(x)~Ex[e—a• (Xび）], x E X¥N. (32) 

Now let us prove (31). Take any, > 0 and廿xk. According to (30), there exists p 

such that for all nミP, , , 
lvn(x) -v(x)I < -, I加(x)-h(x)I<- xEXk・

2 2' 

If t < T,, then v(ふ） +, < h(ふ） • So, for all t < T, 八Tk八CJ',we obtain , , 
叫ふ） :S v(ふ）＋ー<h(ふ）―-<加（ふ）．

2 2 

Hence T1八互八びさテnand we have by (32), 

Vn(x)~Ex[e―a(T-y/\Tk厄）叫Xち/\T,い叶], XE Xk・

On the other hand, I叫:Si.p +心 q.e.by (25), and we may assume that 

応(x)I:S叫）＋心(x)+~'XE Xk・

By Lebesgue convergence theorem, we can let n→ oo in (33) to obtain 

v(x)~Ex[e―a(T-y/\Tk厄）v(X乃/¥Tk/¥び)], XE Xk. 

(33) 

(34) 

Since for quasi-continuous function u E左{e-aT u(Xr) : T is a stopping time} is Px― 

uniformly integrable as was shown in Lemma 5 of Zabczyk8), we have by letting k→ oo, 

v(x)こ： E五[e-a(T-y八CT)v(XT-y/¥CT)].Lettingぅ↓ 0, we obtain by the quasi-left continuity of 

ふ andthe quasi-continuity of v, the inequality v(x)こEx[e-a(f-八CT)v(Xf-1¥び）] , completing 

the proof of (31). ロ
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