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Abstract 

This paper describes the physical manifestations of the various influences of cavity 

(or pillar) shape and the filling factor of dielectric material on band structures in two-

dimensional photonic crystals. The influences of circular or rectangular cross-sections of 

cavity (or pillar) arrays on photonic band structures are considered theoretically, and 

significant aspects of square and triangular lattices are compared. It is shown that both 

the averaged dielectric constant of the photonic crystal and the distribution profile of 

photon energy play important roles in defining optical properties. For the triangular 

lattice, especially, it is shown that cavity array with a rectangular cross-section breaks 

the band structure symmetry. So, we go on to discuss this from the perspective of band 

structure, and consider the optical properties of a lattice with a circular cross-section 

cavity. 

1. Introduction 

The increasing scale of integrated Si devices has given rise to a significant increase in 

the signal delay time between circuit blocks; the signal delay time is now much longer than 

the gate delay time of individ叫 devices. It was expected that this difficulty could be 

overcome by an advanced metallization technique that replaces Al-based wires with Cu-

based wires and the Si02-based interlayer dielectrics with a low-k dielectric material. 

However, it is anticipated that the propagation delay time of signals through interconnections 

will still determine the speed of integrated circuits when the gate length falls below 0.18μm. 

This problem may be overcome by setting optical links between circuit blocks in a chip or 

LSis to transfer signals. Silicon-based waveguides have been widely studied from the 

viewpoints of monolith circuits and process compatibility [l]. The designs must allow for 

problems such as sharp bends, mode dispersion, and specific attenuation. 

Against this background, photonic crystal (PC) materials are attracting attention for 

controlling light wave transmission [2-4]; photonic band-gap (PBG) structures are especially 

useful in applications where the spatial localization of light waves is required [5]. In a three-

dimensional (3-D) PC, we can control the propagation of light waves in all directions. 

Generally speaking, however, it is very difficult to fabricate 3-D PC structures. Its simpler 

cousin, 1-D PC, offers significantly easier fabrication at the cost of reduced functionality. 

Recently, the influence of defects in 1-D PC waveguides with periodic air cavities has been 

demonstrated experimentally, and the characteristics of such waveguides have been 
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examined by simulations [6]. However, it has been clarified that design parameters, such as 

the shape and dimensions of the air cavities, significantly affect the characteristics of the 1-D 

PC waveguide [7]. 

On the other hand, a two-dimensional (2-D) photonic crystal appears to have a high 

potential for light-beam control capability, and it has attracted much attention [8-21]. Since 

2-D photonic crystal has a flexible photonic band structure, the propagation of light waves 

can be controlled using the 2-D PC [l, 2]. In addition, in some cases, the PC gives a specific 

restriction to light-wave propagation even out of PBG: super-prism, self-collimation and 

super-lens are typical phenomena [9-12]. These phenomena suggest higher potential 

applications of the PC for information processing. For these reasons, the 2D PC has been 

widely investigated. From the point of view of physics-based consideration, the pillar or 

cavity array with a circular or rectangular cross-section has been investigated extensively 

[13, 14] because pillar shapes influence the dispersion relation of light-wave propagation. 

In this paper, we will categorize aspects of the optical properties of the PC consisting of 

square lattice or triangular lattice with a circular or rectangular cross-section of pillar or 

cavity. We will also address specific features of the triangular lattice because of breaks in 

propagation symmetry. 

2. Periodic Cavity Array 

We will consider two kinds of lattice structures: square lattice and triangular lattice. As 

is well-known, these lattices show quite different photonic band structures. Perfect band 

gap is created for triangular lattices. In the following sections, photonic band structures of 

lattices with air cavity array and pillar array are considered. In the simulations, two-

dimensional lattices are assumed. Band structures are calculated by the orthogonal plane 

wave expansion (OPW) method, and the photonic band structures are obtained by resolving 

with 225-plane waves [3]. 

2. I Square lattice 

Let us consider the photonic bands of an air cavity array in silicon. A square lattice 

with air cavities, whose cross-sections are circular or rectangular is shown in Fig. 1. The 

periodic cavity array is assigned in x-y plane. It is assumed that material is uniform along 
the z direction. In Fig. 1, a is the lattice constant, r is the radius of cavity having a circular 

cross-section, d is the width of rectangular cavity. We calculate the dispersion relations of 

these photonic crystals for various r/a or d/a values. Fig. l(a) shows the photonic band gap 

(PBG) map for a square lattice in which the cross-section of the air cavity is circular. The 

vertical axis shows the normalized frequency (wa/2冗c),where c is the light wave velocity. 

The horizontal axis shows the circular radius normalized by the lattice constant (r/a). In 

the photonic band gap map, the gray zone shows the photonic band gap for the TE wave 

(magnetic field is parallel with the direction of depth of air cavity). Inside the gray zone, 

regardless of crystal axis, the TE wave does not propagate. The black zone shows the 

photonic band gap for the TM wave (electric field is parallel with the direction of depth of 
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air cavity). Inside the black zone, the TM wave, regardless of crystal axis, does not 

propagate. The dark gray zone shows the perfect photonic band gap, in which any light 

wave mode does not propagate. The band gap for the TE wave and that for the TM wave 

partly overlap as seen in Fig. l(a). 
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Fig.I Photonic band gap (PBG) map for various square lattices. 
(a) Circular cross-section of cavity 
(b) Rectangular cross-section of cavity 
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Fig. l(b) shows the PBG map for a square lattice in which the cross-section of the cavity 

is rectangular. In Fig. l(b), the horizontal axis shows a width of rectangular cavity 

normalized by the lattice constant (d/a). Comparing features of the two photonic band-gap 

maps, the photonic band gap of TE wave for the lattice with a rectangular cross-section is 

wider than that for the lattice with a circular cross-section, and the photonic band gap of 

TM wave for the lattice with a rectangular cross-section is narrower than that for the 

lattice with a circular cross-section. The perfect photonic band gap shares a limited zone 

for the lattice with a circular cross-section (See Fig. l(a)). Here we define the filling factor (t) 

which denotes the ratio of cavity cross-sectional area to unit cell area; f=冗r刃 forthe 

circular cross-section and f=dりa2for rectangular cross-section. At a small filling factor (t), 

we can see little difference in band structures between these two cavity shapes. 

Figs. 2(a) and 2(b) show dispersion relations for the square lattice with a circular cross-

section (r/a=0.17 in Fig. 2(a)) and the square lattice with a rectangular cross-section 

(d/a=0.30 in Fig. 2(b)). The values of r/a and d/a are taken so that the filling factors of 

these two lattices are identical to each other (f=0.09). Since f value is so small, the 

difference of dispersion relations is not significant. The lattice shape does not influence the 

band structure because of small volume of cavity. We also examined whether the filling 

factor has in a very slight influence on dispersion relations for f < 0.16. 
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Fig.2 Dispersion relations for various square 
lattices (f=0.09). Solid lines are for TM 
waves and broken lines for TE waves. 
(a) Circular cross-section of cavity 
(r/a=0.17). 
(b) Rectangular cross-section of cavity 
(d/a=0.30). 

Fig.3 Dispersion relations for various square 
lattices (f=0.72). Solid lines are for TM 
waves and broken lines for TE waves. 
(a) Circular cross-section of cavity 
(r/a=0.48). 
(b) Rectangular cross-section of cavity 
(d/a=0.85). 

Figs. 3(a) and 3(b) show additional dispersion relations for the square lattice with a 

circular cross-section (r/a=0.48 in Fig. 3(a)) and the square lattice with a rectangular cross-

section (d/a=0.85 in Fig. 3(b)). When r/a and d/a have a high value, it is obvious that the 

two dispersion relations have distinct differences. Here, in the same way as above, we 

assumed the ideal filling factor of 0.72 in the two square lattices. In Fig. 3(a), we have wide 

PBG for the TM wave around the normalized frequency (wa/2冗c)of 0.3 and there is no 

PBG for the TE wave in the case of square lattice with circular cross-section cavities. In 

Fig. 3(b), on the other hand, we have a very narrow PBG for the TM wave and wide PBG 

for the TE wave in the case of square lattice with rectangular cross-section cavities. In 

considering these results, there is the well-known general rule of thumb, in which a TM-

mode PBG is apt to appear in a lattice of effectively-isolated dielectric regions and, likewise 

a TE-mode PBG is apt to appear in a lattice structure of un-isolated dielectric regions [2]. 

We can understand the mechanism to be as follows. Since the TE wave has the electric 

field assigned in x-y plane (see Fig. 1), the electric energy is easily stored in the un-isolated 

dielectric regions of the lattice. Since the TM wave has the electric field along the z 

direction (see Fig. 1), the electric energy is easily stored in the isolated dielectric regions of 

the lattice. Band gap is created when we have an energy difference between the stationary 

wave existing stationary in the material with a large averaged refractive index and the 

wave in a small averaged refractive index, which is realized at the boundaries of the 

corresponding Brillouin zone. 

Figs. 4(a) and 4(b) illustrate examples of photonic crystal with a large filling factor. In 
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Fig.4 Illustrations of PCs having a large filling 
factor for various square lattices (f=0.72). 
(a) Circular cross-section of cavity. 
(b) Rectangular cross-section of cavity. 
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Fig.5 Equi-frequency contours for various 
square lattices (f=0.72). 
(a) Circular cross-section of cavity 
(r/a=0.48). 
(b) Rectangular cross-section of cavity 
(d/a=0.85). 

Fig. 4(a), the lattice with a large cavity of circular cross-section is ready to leave behind 

isolated dielectric regions, while the lattice with a rectangular cross-section makes un-

isolated dielectric regions, as shown in Fig. 4(b). This difference in the structure-dependent 

aspects of the two types of lattice results in a difference in dispersion relations and in PBGs, 

as shown in Figs. 3(a) and 3(b). In addition, the spot shape (Fig. 4) yields difference between 

the two dispersion relations. Since the spot is fabricated by Si surroundings with air 

cavities on silicon-on-insulator (SOI) substrate, most of the light-wave energy is stored inside 

the spot (Si) with a dielectric constant higher than that of the air cavities. The geometrical 

difference of spot shape brings out this difference of dispersion relations, even for the 

identical filling factor. 

Aspects of dispersion relations of different cavity shape appear not only in the 

frequency range of PBG but also in equi-frequency contours. TE wave equi-frequency 

contours are plotted in Fig. 5: those for the lattice with a circular cross-section (r/a=0.48) 

are shown in Fig. 5(a) and those with a rectangular cross-section (d/a=0.85) in Fig. 5(b). 

Vertical and horizontal axes stand for wave number kx and wave number ky, respectively. 

Even for the identical filling factor (f=0.72), the line shape of equi-frequency contours for 

different cavity cross-sections shows a somewhat different aspect. It is expected that weak 

self-collimation of light waves will be observed for the square lattice with a circular cross-

section of cavity (see Fig. 5(a)), but not for the lattice with a rectangular cross-section of 

cavity (see Fig. 5(b)). 
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Fig.6 PBG map for various triangular lattices. 
(a) Circular cross-section of cavity. 
(b) Rectangular cross-section of cavity. 

2.2 Triangular lattice 

A triangular lattice with cavities of circular or rectangular cross-section is shown in Fig. 

6. Parameter notations (a, r and d) are the same as those used in Fig. 1. We calculated 

dispersion relations of these photonic crystals for various r/a or d/a values. Fig. 6(a) shows 

the PEG map for the triangular lattice with cavities of a circular cross-section. The vertical 

axis shows the normalized frequency (wa/2nc). The horizontal axis shows the circular 

radius normalized by the lattice constant (r/a). As shown in Fig. 6(a), the circular cross-

section cavity makes a wide TE-wave PEG; the TM-wave PEG is narrower than the TE-

wave PEG. Fig. 6(b) shows the PEG map for the triangular lattice with a rectangular cross-

section cavity. Vertical and horizontal axes stand for the normalized frequency (wa/2冗c)

and the rectangular cavity width normalized by the lattice constant (d/a). On comparing 

features of the two PEG maps, it may be seen that the TE-wave PEG for the lattice with a 

circular cross-section cavity has features similar to those for the lattice with a rectangular 

cross-section cavity; the TM-wave PEG for the lattice with a rectangular cross-section cavity 

is separated into two regions; and the polarization-independent PEG for the lattice with a 

circular cross-section cavity is wider than that for the lattice with a rectangular cross-

section cavity. However, just like the square lattice, we can see a negligible difference of 

band structures between lattices with the two types of cavity shape for a small filling factor. 

Now, we will turn to band-structure symmetry in a triangular lattice with cavities of a 

rectangular cross-section. The real-space triangular lattice is shown in Fig. 7(a), and the 

triangular lattice in the corresponding reciprocal space is shown in Fig. 7(b). In Fig. 7(a), 

material geometry along the vector a is different from that along vector b, because cavity 
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Fig.7 Illustrations of triangular lattice with a 
rectangular cross-section of cavity. 
(a) Lattice illustrated in a real space. 
(b) Reciprocal lattice and Brillouin zone. 
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Fig.8 Dispersion relations for various 
triangular lattices (f=0.83). Solid lines 
are for TM waves and broken lines 
for TE waves. 
(a) Circular cross-section of cavity 
(r/a=0.48). 
(b) Rectangular cross-section of cavity 
(d/a=0.85). 

cross-section is rectangular in cross-section: This is a significant aspect of a triangular 

lattice with rectangular cavities. As a result, optical properties at points K'and M'in the 

first Brillouin zone are not equal to those at points K and M in the first Brillouin zone, as 

shown in Fig. 7(b). A triangular lattice with cavities of rectangular cross-section breaks 

band structure symmetry, but it still has the band structure symmetry of 120 degrees. On 

the other hand, a triangular lattice with cavities of circular cross-section has a band 

structure symmetry of 60 degrees. 

As mentioned earlier in the context of a square lattice, when r/a or d/a has a small 

value, dispersion relations for both a triangular lattice with cavities of a rectangular cross-

section and those for a triangular lattice with cavities of circular cross-section are very 

similar. When r / a or d/ a has a small value, the difference in optical properties between 

points K'and M'of the first Brillouin zone and points K and M of the first Brillouin zone is 

not significant for a triangular lattice with cavities of rectangular cross-section. 

When r/a or d/a has a large value, two dispersion relations show a somewhat different 

aspect. Figs. 8(a) and 8(b) illustrate calculated dispersion relations for a lattice with cavities 

of a circular cross-section (r/a=0.48) and for a lattice with cavities of a rectangular cross-

section (d/a=0.85), respectively. In Fig. 8, the filling factors of the two lattices are identical 

to each other (f=0.83), but their dispersion relations have many different features. In Fig. 

8(b), the TE-wave PBG along the M direction of the first Brillouin zone is narrow because of 

a rectangular cross-section cavity. Figs. 9(a) and 9(b) illustrate two different PC structures 

with a large filling factor. In Fig. 9(a), we can see isolated Si spots surrounded by air 
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’’ (bl 

Fig.9 Illustrations of PCs having a large filling 
factor for various triangular lattices. 
(a) Circular cross-section of cavity. 
(b) Rectangular cross-section of cavity. 

(b) 

(c) (d) 

Fig.IO Illustrations of PCs for various lattice 
structures. 
(a) Square lattice with pillars of a 
circular cross-section. 
(b) Square lattice with pillars of a 
rectangular cross-section. 
(c) Triangular lattice with pillars of a 
circular cross-section. 
(d) Triangular lattice with pillars of a 
rectangular cross-section. 

cavities aligned independently of crystal axis. In Fig. 9(b), there is no un-isolated spot along 

the r -M direction. So, since the TE-wave PBG is easily created for un-isolated spots, the 
TE-wave band gap along theじM direction is narrow. In addition, the dispersion relation 

along the「-Mdirection is different from that along theじM'direction,as shown in Fig. 

8(b). In Fig. 9(b), the r -M'direction has periodic-un-isolated spots, and the TE-wave band 
gap along the「-M'directionis wider than the TE-wave band gap along the 1-M direction. 

Wide perfect PBG exists for a circular cross-section cavity (see Fig. 8(a)), while narrow 

perfect PBG exists for a rectangular cross-section cavity (see Fig. 8(b)). This is caused by 

the difference in spot shape. 

3. Periodic Silicon Pillar Array 

Finally, we will discuss optical properties of lattices with Si pillar array. The PC 

structures with Si pillar array are shown in Fig. 10. Figs. 10 (a) and lO(b) are composed of 

square lattice, whereas Figs. lO(c) and (d) are of triangular lattice. Figs. lO(a) and lO(c) show 

PCs with a circular cross-section pillar and Figs. lO(b) and lO(d) show PCs with a 

rectangular cross-section pillar. Parameter values of a, r and d are the same as those used 

in Fig. 1 for square lattices and in Fig. 6 for triangular lattices. Fig. 11 shows the PBG maps 

for a square lattice with a circular cross-section pillar as a typical simulation result. The 

vertical axis represents the normalized frequency (w a/2冗c).The transverse axis indicates 

the circular radius normalized by the lattice constant (r/a). For the Si pillar array, we can 

see only isolated Si regions, not un-isolated Si regions, but this depends on filling factor (t). 
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Fig.11 PBG maps for various lattices shown in Fig. IO(a). 
A square lattice with pillars of a circular cross-section is assumed. 

The TM-waves have a wide PBG, while the TE-waves have a narrow PBG. Since dielectric 

spots are made of air with a lower dielectric constant, the light wave energy is stored in Si 

pillars with a higher dielectric constant. In such cases, the effective permittivity of the PC 

region is ruled by silicon pillars. This suggests that simulation results for band structures 

of the PC structures shown in Fig. 10 will be almost identical to each other, regardless of 

pillar shapes. Actually, our simulation results do indicate the veracity of this prediction. 

4. Conclusion 

We investigated how the optical band structure of photonic crystal depends on lattice 

array structure (square lattice or triangular lattice) and cross-sectional shape of lattice point 

(circular or triangular shape). The band structures of PCs are categorized from the point of 

view of a PBG map. In lattices with air cavity array, when the filling factor is small, we see 

a slight difference of dispersion relations that arise independently of cavity shape. However, 

when the filling factor is large, it is clearly seen that the two dispersion relations have 

somewhat different aspects. In other words, the cross-section of the lattice-point modulates 

the band structure. A difference in the optical property of lattices with cavity or pillar of a 

circular or rectangular cross-section results not only in PBG aspect, but also in equi-

frequency contours. For a triangular lattice, it was shown that the rectangular cross-section 

of lattice-point breaks the band structure symmetry. For lattices with an Si pillar array, we 

can see a slight difference of band structure between two-different pillar shapes because 

spots are made of air. 
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