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Abstract 

When several items having different weights are packed into a bag, the sum 
weight of each packed bag needs to be constant. The problem at packing is how to 
determine the items to be included in a bag so that the sum weight should be closest 
to the desired weight. In this paper, the following two algorithms are shown; one is 
to solve as an optimization problem and the other is to solve as a constraint 
satisfaction problem. Comparing the two algorithms, their functional rolls are made 
clear. In order to reduce the number of items remaining in scale hoppers for a long 
time, a method is proposed in which each of the two algorithms can be turned over 
one after another. Simulation results seem to prove that the proposed method is 
preferable. 

1. Introduction 

A certain items having different weights are packed into a bag so that the sum weight 

of each packed bag should be constant. Such items as vegetables, snack foods or cereals, 

processed foods and machinery can be listed as examples. In order to pack such items 

together, a weighing machine 1>-4> that can achieve the given desired weight is produced. In 

the weighing machine, the weight of items is measured in each scale hopper, and several 

hoppers are opened so that the sum weight should be closest to the desired weight. 

In this paper, the upper limit of desired weight is considered. So the sum weight must 

not be less than the desired weight and it must not be greater than the upper limit. When 

this constraint cannot be satisfied, there is no solution and the packing operation cannot be 

executed. So the fewer the number of cases where there is no solution, the better the 

performance of the machine is. Therefore, the performance can be measured by examining 

the rate of finding solutions, which is defined as how many times solutions are found. Also 

the closer the sum weight is to the desired weight, the better the performance is. 

Therefore, the performance can also be measured by examining how close each sum weight 

is to the desired weight. 

In normal weighing machine usage, both the above two performance measurements 

must be good. On the other hand, such items as foodstuffs or frozen foods deteriorate if 

they remain for a long time in scale hoppers. In such cases, it must be considered how long 
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items can remain in a scale hopper. Therefore, the purpose of this paper is to decrease the 

number of items remaining for a long time, without worsening the other two performance 

measurements. 

2. Outline of a Weighing Machine 

A general machine for achieving the desired weight consists of a supplying unit, a 

diversifiable feeder, a pool hopper, a scale hopper and so on. It carries out a series of 

operations, which start with supplying items to the diversifiable feeder, and ends with 

packing them together into a plastic bag. In Fig. 1, a diagram of such a weighing machine 

is presented. 

こ supplyingunit 

~diversifiable feeder 

ははlJlJ lJ lJ lJ lJ pool hopper 

Uし）lJlJし）lJlJし1) scale hopper 

且 じ且

〖゜ ゜ ~lecting chute 

且

[0 bag-packing unit 

Fig.I Weighing machine for achieving desired weights 

In Fig. 1, items are fed from the supplying unit. In a diversifiable feeder, items are 

scattered and pour into a pool hopper. The diversifiable feeder can vibrate items and to a 

certain extent can regulate the quantity of items pouring into pool hoppers. A pool hopper 

has the function of reducing the vibration influence caused by falling. In a scale hopper, the 

weight of items is measured by using a load cell as a weighing sensor. After measuring the 

weight, several hoppers are selected so that the sum weight should be closest to the desired 

weight. As the result, selected hoppers are opened and several items fall through a 

collecting chute. Finally, selected items are transferred to an automatic packing machine. 

3. How to Solve a Bag-packing Problem (OPT and CSP algorithms) 

3.1 Definition of a bag-packing problem 

It is assumed that n pairs of scale hoppers are attached to the weighing machine. 1w; is 
defined as the weight of i-th scale hopper. Let 0-1 decision variable be X;, which is defined 

as follows; when瓦 is1, the i-th hopper is opened, when X; is 0, the i-th hopper is not 

opened. 

The sum weight of packed items should satisfy the following constraints; it must not be 

less than the desired weight, w; 沃 t, and it must not be greater than the maximum weight, 
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Wmax・Here Wset and Wmax are predetermined constants, and the inequality Wset~Wmax must 

be satisfied. X; must be determined so that the sum weight should satisfy the upper and 

lower limit constraints. The following are the constraints that must be satisfied in solving a 

bag-packing problem; 

fwx訊「~et
i=l 

(1) 

fi¾xi畑~ax
i=l 

(2) 

Xi E j 0, 1 l, i= 1, 2, …，n (3) 

Here the pair of Xi that satisfies Eq. (1) to (3) is called a solution. In searching for a solution, 

the pair of X; that satisfies only Eq. (3) is called a candidate solution. 

In order that there should be a candidate solution that satisfies Eq. (1), at least w; must 
satisfy Eq. (4). 

四訊et
i=l 

(4) 

If W; > Wmax, w; cannot be selected as a solution. Therefore, w; must satisfy Eq. (5), in order 
that all n pairs of W; could be selected as a premise for candidate solution. 

W~Wmax, i = 1,2, …，n (5) 

For a specific pair of Wi, no solution can be found even when every candidate solution is 

enumerated5i. In this case, the following operation is executed; items are added into one 

hopper or all the contents of scale hoppers are eliminated. Detailed procedure of this 

operation is shown in section 3.2. 

3.2 Simulation algorithm 

Based on the problem definition shown in the previous section, a simulation algorithm 

for executing a bag-packing operation is shown as follows; 

Step I K← 0. Nb← 0. The value of凡 isgiven a priori. 

Ste臼 Oneitem is supplied into each empty hopper. S; ← 0 for each number of i if the 

item is newly supplied. Si← Si+ I for eve巧 numberof i if it is not supplied. 
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Ste旦 Itmust be checked to ascertain whether W; can satisfy Eq. (4) and Eq. (5). If Wi 

cannot satisfy Eq. (4), go to Step 5. If W; cannot satisfy Eq. (5), go to Step 8. 

Ste旦 Eachof the candidate solutions is enumerated. If a solution (or optimal solution) is 

found, go to Step 9. 

Ste臼 Ifevery hopper has two items, go to Step 6. Otherwise, go to Step 7. 

Ste且 Allthe contents in every scale hopper are eliminated. Nb← Nげ1.Go to Step 2. 

Ste旦zOne item is added only once to a scale hopper that has one item. Si← S汁1for i=l 

to n. Go to Step 3. 

Ste四 IfW; > Wmax, the contents of W; in the i-th hopper are eliminated. Go to Step 2. 

Ste四 Openthe hoppers that are selected as a solution (or optimal solution). K← K+l. 

Ste.E_ぃS*← Si for each i-th hopper that is selected. If Kく Na,go to step 2, otherwise, stop. 

In this paper, the above simulation has finished when the packed items tatal 5,000. 

Therefore Na is set at 5,000. Nb is the number of cases where there is no solution even if 

items are added into hoppers. The rate of finding solutions is defined as follows; 

Na 
a= 

Na +Nb 
(6) 

The execution of Steps 2, 5, and 7 determines how many items can be held in each 

hopper. In the above algorithm, it is assumed that one or two items can be held. On the 

other hand, it is possible to manipulate the number of holding items in each hopper so that 

the rate of finding solutions is high. In this paper, it is assumed that the average weight of 

input materials is a constant 27.5g. In this case, it has been examined in advance that the 

rate of finding solutions is high when one or two items are held in each hopper凡

In Steps 4 and 9, a solution or optimal solution is selected, depending on the algorithm 

shown in section 3.3 or 3.4. 

Si and S* are the variables that tell us how long the items have remained in each 

hopper. Here, items remaining in a hopper are called'residues'. The residues have 

remained continuously Si steps in i-th hopper. If a new item is supplied into an empty 

hopper, Si is renewed as 0. S* is the final value of Si when items are eliminated from the 

scale hopper. When a new item is supplied and it is extracted immediately, then S*=O. For 

example, when items in i-th hopper are extracted after Step 4 is executed 10 times, S*=9. 

In other words, the items in the i-th hopper have remained continuously 9 times. Note that 

when a new item is added in Step 7, S; is not renewed as 0. That is because S* is calculated 

for the items that remain in the hopper. 

3.3 Problem definition as an optimization problem and OPT algorithm 

In this section, a bag-packing problem, in which sum weight is closest to the desired 
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weight, is defined as an optimization problem•'. In this case, every solution is enumerated 

and among them an optimal solution is selected so that the objective function shown in 

Eq. (7) is minimized. 

n 

Z=IWiXi 
i=l 

(7) 

Such a searching algorithm is defined as an OPT one. For the OPT algorithm, an optimal 

solution is selected in both Step 4 and Step 9, as shown in section 3.2. 

3.4 Problem definition as a constraint satisfaction problem and CSP algorithm 

In this section, the bag-packing problem is defined as a constraint satisfaction problem. 

A candidate solution is enumerated and when it satisfies both Eq. (1) and Eq. (2), the 

enumeration is terminated. So the solution that is found first is selected in Step 4 and 

Step 9, as shown in section 3.2. Therefore, it is important to determine how to enumerate a 

candidate solution. In this paper, because the number of residues needs to be decreased, a 

method is proposed in which the higher the number of steps remaining in the i-th hopper, 

the higher the priority for selection is. 

In Step 4 of the simulation algorithm,. a process enabling enumeration of candidate 

solutions is illustrated using an example. Let us think of a case where n = 10 and LょX;=6. 

Table 1 shows the process of enumerating candidate solutions. The index i shows the 

hopper number. The position shown as 1 stands for X; = 1. Candidate solutions are 

enumerated in order from the top line down to the bottom. We then examine whether the 

selected pair of W; for each column can satisfy Eq. 

(1) and Eq. (2). 

When candidate solutions are enumerated in the 

order shown in Table 1, the i-th hopper that has the 

smaller i, has a higher priority in searching for a 

solution. However the hopper number i does not 

necessarily correspond to the actual hopper number 

i. Therefore, a priority can easily be introduced, 

which permits the hopper with the highest priority 

to have the lowest number i. 

As the number of residues needs to be 

decreased, w; is sorted in the order of hopper with 

the largest Si . That is, the larger the steps 

remaining in the hopper are, the higher the priority 

is. Using the characteristics of the enumeration 

process shown in Table 1, such an algorithm is 

defined as a CSP one, by which we can decrease the 

number of residues. 

Table 1 Enumeration steps in a 
searching algorithm 

i 

j 1 2345678910  

1 1 1 1 1 1 1 

2 1 1 1 1 1 1 

3 1 1 1 1 1 1 

4 1 1 1 1 1 1 

5 1 1 1 1 1 1 

6 1 1 1 1 1 1 

7 1 1 1 1 1 1 

8 1 1 1 1 1 1 ， 1 1 1 1 1 1 

10 1 1 1 1 1 1 

11 1 1 1 1 1 1 

12 1 1 1 1 1 1 

13 1 1 1 1 1 1 

14 1 1 1 1 1 1 

15 1 1 1 1 1 1 

16 1 1 1 1 1 1 

17 1 1 1 1 1 1 

18 1 1 1 1 1 1 

19 1 1 1 1 1 1 

： ： ： 
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3.5 Comparison between OPT and CSP algorithms 

By executing a bag-packing simulation, the solution characteristics obtained by OPT and 

CSP algorithms are examined. 

It is assumed that n = 10, Wset= 150.0g, Wmax= 156.0g, the weight of input items is 

generated from a normal distribution that obeys the averageμ=27.5g, and the standard 

deviation a =3.3g. The maximum weight of input items isμ+ 3 a, and minimum isμ--3 a. 

Under these parameter settings, there is no case where n pairs of W; cannot satisfy Eq. (4) 

and Eq. (5). 

In the OPT and CSP algorithms, we examine how many residues there are in the 

hoppers. The number of residues is compared with the case of OPT and CSP algorithms. 

Fig. 2 shows the result of OPT algorithm and Fig. 3 shows that of CSP algorithm. The X-

axis shows S*, which is the number of steps remaining. The Y-axis shows the number of 

items for each value of S* as a logarithm. The number of residues in Figs. 2 and 3 is the 

average for executing the simulation 3 times where Na = 5,000. But as the number o:f cases 

where S* = 0 is very large, they are omitted from the figures. 
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Comparing the two results, we see that there are some items remaining for a long time 

in the OPT algorithm result. On the other hand, there is no item that satisfies S*~41 in 
the CSP algorithm result. The CSP one has a marked effect on decreasing the number of 

items remaining for a long time. 

In comparing the two results, the following three performance indices are considered: 

1) Z, the average value of objective function Z 

2) a, the rate of finding solutions 

3) /3, the average number of items remaining for a long time 

In 1), Z is defined as the average of Z only when a solution is found. It is desirable that 

Z is also as close as possible to the desired value Wset・In 2), it is better for a to be higher, 

which is defined in Eq. (6). In 3), /3 is defined as the average number of residues that 

satisfy S*~30. It is better for /3 to be smaller, because the number of items remaining for 

a long time should be minimized. 

Table 2 shows the results when the OPT and CSP algorithms are compared for the 

above three performance indices. The values shown are averaged 3 times of bag-packing 

simulation where Na=5,000. The used parameters are the same as those in section 3.5. 

Table 2 Comparison of the performance indices of OPT and CSP 

Z [g] a [%] (3 [-] 

OPT 151.2 96. 7 31.0 

CSP 152.9 97.4 11. 7 

In Table 2, the following results are made clear; Z obtained by OPT algorithm is the 

lowest possible value that can be closest to Wset・Z obtained by CSP algorithm is larger 

than that by OPT algorithm. a of CSP algorithm is better than that of OPT algorithm. 

This is because by extracting long-term items with priority, a solution can easily be found in 

the next search. f3 of CSP algorithm is much smaller than that of OPT algorithm, which is 

clear from the results shown in Figs. 2 and 3. 

4. Decreasing the Number of Items Remaining for a Long Time 

From the results shown in the previous sections, it is clear that, in the OPT algorithm, the 

sum weight can be made closer to the desired weight, but the number of items remaining for 

a long time increases. On the other hand, in the CSP algorithm, while the number of items 

remaining for a long time can be decreased, it is more difficult for the sum weight to be close 

to the desired weight. Therefore, a method is proposed in which the OPT and CSP 

algorithms are combined. In this way, we hope the sum weight will be closer to the desired 

weight, and the number of items remaining for a long time will decrease. 

The OPT algorithm is used as an initial step for searching, so that the sum weight should 

be closest to the desired weight. The number of steps remaining is counted for each item. 

The CSP algorithm replaces the OPT one if max, lS,I equals or exceeds the critical value R. 

Therefore, even if only one item in a hopper has been remaining R times, the algorithm is 
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replaced. When the OPT one is replaced with the CSP one, if the number of long-term items 

has decreased, we reverted to the OPT one. This is because by using only the CSP one we 

cannot make sum weight closer to the desired weight. The criterion, max; JS;/ < R, is applied 

for the timing of replacing CSP with OPT. In this paper, such a method is defined as 

OPT +CSP, in which each of the two searching algorithms is turned over, one after another, 

according to the number of residues. 

The following simulation is executed with the parameter R fixed to constant. In this 

section R is set to 21 as the items that satisfy S; ~21 seem to be remaining for a long time. 

Other parameters are the same as for section 3.5. The number of residues is shown in Fig. 4. 
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Fig.4 Distribution of the number of residues for S* (OPT+CSP) 

From Fig. 4, we can see that the number of residues that satisfy S*~21 is decreased, as 
compared with the OPT result (Fig. 2). But still it is larger than the CSP result (Fig. 3). Even 

though R = 21, there are still residues that satisfy S*~21. This is because in OPT+CSP the 
residues that satisfy S*~21 are not completely eliminated. Ne = 132.3 and is defined as the 

number of times the CSP algorithm is executed when both OPT and CSP algorithms are 

executed a total of Na times. And Ne is the average of 3 times where Na=S,000. 

Next, we examined how the three performance indices, a , /3, Z, change when the 

parameter R is varied. The parameter R is specified as X-axis, and a , /3 , Z as Y-axis. In 

Fig. 5, results within the range R = 10 to 30 are plotted. Ne = 744.7 when R = 10, and Ne = 

30.3 when R = 30. When R is large, the results are closer to that of the OPT one, but, when R 

is small, they are closer to that of the CSP one. 

Fig. 5 shows that Z decreases when R is increased from 10 to 30. But the range of its 

change is very small. Notably, when R~19, it becomes almost constant. As compared with 

the OPT result, shown in Table 2, it converges to the lower limit of Z, which is 151.2g. Z of 

OPT+CSP, as shown in Fig. 5, is small enough when compared with the CSP result shown in 

Table 2. This is because the OPT algorithm is used more frequently than the CSP one (Ne = 
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In Fig. 5, a , the rate of finding solutions, is changed in a range of 96.8 -97.2 %. a does 

not deteriorate drastically with varying R. a in OPT+CSP is better than that of the OPT 

algorithm shown in Table 2. 

In Fig. 5, we see that {J is low when R = 10 to 23. But when R is large, {J increases, and 

it becomes difficult to decrease the number of residues. Therefore, it is not desirable that R is 

set to a large value. 

From the above-mentioned results, it is found that a is high, {J is low, and Z is closer to 

Wset, in the range of R = 10-23. Under the given simulation parameters, we find that 

OPT+CSP is superior to the result of using only the OPT algorithm or only the CSP one (see 

Table 2). 

5. Conclusion 

When items having different weights are packed together, the sum weight should be as 

close as possible to the desired weight. The following two algorithms were considered: the 

OPT algorithm for solving the problem by optimization, and the CSP algorithm for solving 

the problem by constraint satisfaction. 

Using the OPT one, the sum weight of packed items is minimized. With the CSP one, 

however, without considering optimization, solutions that satisfy upper and lower limit 

constraints are searched. A further function is introduced so that long-term items are 

reduced. 

The simulation results showed that, by using the OPT algorithm, the sum weight can be 

made closer to the desired weight. However, many items are left remaining for a long time. 

On the other hand, using the CSP one, number of items remaining for a long time can be 

decreased, but the sum weight is a little bit too far from the desired weight. Therefore, it is 
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proposed that, according to the number of steps remaining, each of the two algorithms is 

turned over one after another (OPT+CSP). Simulation results seem to prove that the 

proposed OPT+CSP is preferable. 

In OPT+CSP, the key parameter to be determined is when each of two algorithms 

should be turned over. Taking the viewpoint of a maximum time items may be retained in 

a hopper, the timing of turning over can be determined・by simulation a priori. 
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