建物モデルの振動実験とシミュレーション解析の精度

池 永 昌 容*

Shake table test of Building structure and Accuracy of simulation analysis

Masahiro IKENAGA*

1. はじめに

建築構造物の地震時挙動を把握する手法として、建 物モデルによる振動実験が挙げられる。振動実験は規 模によって用いる試験体は異なり、たとえば世界最大 の振動台である E-ディフェンスを使った実物大建物 から、手のひらサイズの小さな振動模型まで様々なも のがある。実際の建物を作る場合には、柱や梁など建 物のどの部位が破壊されるかなどの詳細な実験結果が 得られるが、実験コストなどの問題から実施は極めて 困難である。

小型施設を用いた振動試験においては、構造物を小 型化・単純化して試験体を作成する事が多い。この場 合、柱・梁・床といった様々な要素から構成される建 築構造物を、単純な1つのマスとバネ、そしてダッシュ ポットの振動モデルに置き換えて実験する。ただし試 験体を小型化した場合、実物大の建物では無視するこ とができる摩擦などの影響が相対的に大きくなるた め、実験が可能な範囲内で大きい試験体を作る必要が ある。

本解説では、縮小試験体を用いて行った振動実験を 紹介し、その実験結果と数値シミュレーション解析結 果との比較から、建築構造分野における実験と解析の 精度について紹介する。

2. 建築構造物の振動実験

2.1 試験体について

図1に本報で解説する振動実験で用いる試験体写真

原稿受付 2018年10月26日 *環境都市工学部 建築学科 准教授 を、図2に立面図、表1に試験体諸元を示す。試験体 は免震建物を縮小模型にしたもので、下部のレール部 分が大きく可動することで免震建物と類似した特性で 振動する。

免震構造物は建物下部にリニアガイドと言われる レールや積層ゴム支承と言われる水平方向に柔らかい 装置を配置することで免震層を構成し、免震層を大き く動かす代わりに上部の建物に作用する地震動を軽減 する構造物である¹⁾。本試験体では上部構造に鋼製フ レームを組んでいるが、簡単のために建物部分は斜め に入れた筋交いで動かないようにしている。また免震 層にはレールを用いており、固有周期3.21秒と実際の 一般的な免震構造物と同程度の固有周期としている。

建築構造物の硬さを示す試験体剛性は、試験体左部 に設置された板バネによって再現している。この板バ ネは、建物モデルから水平力を受けると曲げ変形を受 けつつ、その曲げ剛性によって建物モデルに復元力を 加えることで、水平方向に試験体剛性に等しいバネ剛 性を発揮する。

図1 縮小建物試験体の写真

図2 試験体立面図

表1 試験体諸元

試験体重量	mf	2.79トン
試験体剛性	kf	10.68kN/m
固有周期	T	3.21秒
レール摩擦力	Fs	0.04kN

また免震構造物では、免震層の変形を抑制するため にオイルダンパーと言われる減衰装置が用いられる (図3)。この装置は減衰力が速度に依存し、建物の揺 れが大きく速度が大きくなると、大きな力を発揮して 地震時の揺れを抑える特性がある。実験ではこのオイ ルダンパーも免震層に導入し、その性能も確認した。 なおオイルダンパーの性能は、実物大免震構造物にお いて発揮される性能と同程度の性能を本縮小型試験体 に対して発揮されるように、性能を調整して製作した ものを用いた。

図3 オイルダンパー

2.2 計測装置

振動実験では各部位の変位と加速度、そしてダン パーの減衰力を測定する必要がある。図4にそれぞれ の応答値を測定するための装置を示す。

(a) レーザー変位計

図中の黒いセンサーヘッドからレーザー光を出し、 その光を白いターゲットに当てることで反射させ、反

図4 計測装置

射光をセンサーヘッドで受光することでセンサーヘッ ドからターゲットまでの距離を測定する。試験体では 免震層の動く方向にレーザー変位計を設置し、免震層 変位を測定する。

(b) 加速度計

センサーが加速度を感知するため、加速度を計測し たい場所に両面テープなどで貼り付けて使用する。今 回の実験では振動台と免震層の上部にそれぞれ貼り付 けることで、入力される地震動加速度と、免震層上部 の加速度を計測している。

(c) ロードセル

図に示す円形の装置で、圧縮力もしくは引張力が作 用することで生じる装置の歪を計測し、そこから作用 した力を計測する装置である。本実験ではダンパーの 端部に取り付けることで、ダンパーが発揮する減衰力 を計測する。

2.3 振動実験の概要

実験では、振動台を過去に観測された地震動の加速 度で振動させることで、免震試験体を揺らして地震時 挙動を再現する。ただし振動台の性能による限界があ るため、観測地震動加速度に適切な倍率を乗じて振動 実験を行うことが多い。本解説で示す振動実験は東北 大学所有の大型振動実験装置で行った実験で、入力地 震動として1995年兵庫県南部地震、神戸海洋気象台記 録を40%にした地震動を用いる。図5に入力地震動の 加速度時刻歴を示す。

3. 解析手法

数値解析のために、試験体を元にした建物の解析モ デルを図6のように構築する。この解析モデルに対す る運動方程式を導き、そこから時刻歴応答解析を行う。 まず質点に働く力は、以下の4種類となる。

図5 振動実験で入力した地震動加速度

図6 解析モデル

復元材による復元力 $F_f = K_f y$ (1)

ダッシュポッドによる減衰力 $F_d = C_d \dot{y}$ (2)

すべり支承による減衰力 F_s (3)

慣性力 $m(\ddot{y} + \ddot{y}_0)$ (4)

質点に働く力の動的な釣り合いを考えると、 d'Alambertの原理より、次式が導かれる。

$$m(\ddot{y}+\ddot{y}_{0})-F_{f}-F_{s}-F_{d}=m(\ddot{y}+\ddot{y}_{0})-K_{f}y-F_{s}-C_{d}\dot{y}=0$$
 (5)

これを応答増分表現でかきかえると、

$$m(\Delta \ddot{y} + \Delta \ddot{y}_0) - K_f \Delta y - \Delta F_s - C_d \Delta \dot{y} = 0$$
(6)

ただし、Δは任意のステップnとその次のステップ n+1の差分で、次式で計算される。

$$\begin{aligned}
\Delta y &= y_{n+1} - y_n \\
\Delta \dot{y} &= \dot{y}_{n+1} - \dot{y}_n \\
\Delta \ddot{y} &= \ddot{y}_{n+1} - \ddot{y}_n \\
\Delta \ddot{y}_0 &= \ddot{y}_{0n+1} - \ddot{y}_{0n}
\end{aligned}$$
(7)

式(6)は建物変位 yに対する微分方程式であり、y

について解くことで建物変位が計算できる。建築分野 では、この微分方程式の開放として平均加速度法の仮 定^{2).3)} が頻繁に用いられる。

$$\dot{y}_{n+1} = \dot{y}_n + \frac{\dot{y}_n + \dot{y}_{n+1}}{2} \Delta t$$
(8)

.. ..

$$y_{n+1} = y_n + \frac{\dot{y}_n + \dot{y}_{n+1}}{2} \Delta t = y_n + \dot{y}_n \Delta t + \frac{\ddot{y}_n + \ddot{y}_{n+1}}{4} \Delta t^2$$
(9)

式(8)、(9)を増分表記すると、次式が得られる。

$$\Delta \dot{y} = \ddot{y}_n \Delta t + \frac{1}{2} \Delta \ddot{y} \Delta t \tag{10}$$

$$\Delta y = \dot{y}\Delta t + \frac{1}{2}\ddot{y}_{n}\Delta t + \frac{1}{4}\Delta\ddot{y}\Delta t^{2}$$
(11)

式(6)に式(10)、(11)を代入すると、式(12) ~(14)が導かれる。

$$\Delta y = \frac{m \left(-\Delta \ddot{y}_0 + \frac{4}{\Delta t^2} \dot{y}_n + 2 \ddot{y}_n \right) - \Delta F_s + 2C_d \dot{y}_n}{K_s + \frac{2}{\Delta t} C_d + \frac{4}{\Delta t^2} m}$$
(12)

$$\Delta \dot{y} = \frac{2}{\Delta t} \Delta y - 2 \dot{y}_n \tag{13}$$

$$\Delta \ddot{y} = \frac{4}{\Delta t^2} \Delta y - \frac{4}{\Delta t} \dot{y}_n - 2 \ddot{y}_n \tag{14}$$

式(12)の右辺に着目すると、右辺はすべて n ステッ プ目の応答値と入力地動加速度 ÿ₀、そしてその他は定 数で表現されている。このことから、次の瞬間である n+1ステップ目の応答値は、式(7)を用いることで、 現在までの応答値と応答の増分量によって計算され る。

4. 実験結果とシミュレーション解析結果

図7に実験結果とシミュレーション解析結果を示 す。建築構造物の振動実験においては、変位、加速度、 ダンパー力などが重要になる。

変位は建物変位であるため、実際の建築設計では変 位を法律で定められた値未満にすることが求められ る。また加速度は地震時の建物内部の居住性や家具・ 物品の転倒に関連するため、こちらも抑制することが 望まれる。ダンパー力については、大きすぎると建物 本体に大きな力を加えることになり、建物本体や取り 付け部が損傷する危険性があるため、ある程度の大き さに限定させて設計するのが一般的である。

以上の知見をふまえて図7の加速度に着目すると、 加速度最大値は0.4m/s2程度となっており、入力地震 動加速度の最大値に比べて1/6程度に低減されている。 このことから、試験体の免震層は十分に機能を果たし ていると判断できる。

一方で変位とダンパー力については入力地震動自体

図7 振動実験結果とシミュレーション解析結果

が縮小されているため判断は難しいが、一般的な免震 構造物の最大免震層変位が300mm 程度を想定するこ とを考慮すると、良い実験結果と判断することは可能 である。

実験結果とシミュレーション解析結果を比較する と、30秒間を通してその波形は非常によく合致してお り、平均加速度法を用いた数値解析シミュレーション の妥当性を示している。

5.まとめ

本報では建築構造物の地震時挙動を検証するため に、地震動を再現する振動台と縮小建物モデル試験体 を用いた振動実験を示した。またその振動実験に対す るシミュレーション解析についても解説し、その妥当 性を実験結果と比較することで検討した。その結果、 縮小免震建物試験体の振動実験では免震層が十分な性 能を発揮する結果を得た。また建築構造分野で広く用 いられる平均加速度法を用いることで、振動実験結果 を非常に精度良く評価することができることを示し た。

参考文献

- 日本建築学会:免震構造設計指針-第3版-,日本建築学会,2001
- 2)日本建築学会関東支部:学びやすい構造設計シ リーズ 免震・制震構造の設計,技報堂出版, 2007
- 3)柴田明徳:最新耐震構造解析-第2版-,森北出版,2003