Efficient conversion of 2^{\prime}-hydroxychalcones into flavanones and flavanols in a water suspension medium

Koichi Tanaka* and Teizo Sugino
Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan. E-mail: tanaka@en3.ehime-u.ac.jp

Received 26th February 2001
First published as an Advance Article on the web 29th May 2001

Conversion of 2^{\prime}-hydroxychalcones into flavanones and flavanols was found to proceed very efficiently in a water suspension medium.

Introduction

Flavanones 2 are important naturally occurring pharmacological compounds and are valuable precursors for the synthesis of flavanoids. ${ }^{1}$ Preparation of flavanones $\mathbf{2}$ has been carried out by intramolecular cyclization of 2-hydroxychalcone 1 under various conditions using acids, ${ }^{2}$ bases, ${ }^{3}$ thermolysis, ${ }^{4}$ electrolysis ${ }^{5}$ and photolysis. ${ }^{6}$ However, the yields of these reactions are often moderate ($20-90 \%$ yield) and the reaction usually gives a mixture of $\mathbf{1}$ and $\mathbf{2}$, the separation of which requires a lot of organic solvent such as benzene. We have now found that 2^{\prime} hydroxychalcones $\mathbf{1}$ are converted into flavanones $\mathbf{2}$ very efficiently in a water suspension medium and the products isolated simply by filtration. An efficient cyclization reaction of 2^{\prime}-hydroxychalcones 1 to 2,3-dihydroflavanols 3 by using $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$ in a water suspension medium is also reported. These reactions require no organic solvent (except for product recrystallisation), and waste minimization, simple operation, and easier product work-up can be achieved.

Results and discussion

It has been reported that the intramolecular cyclization reaction of 1a in MeOH using NaOH as base gives flavanone 2a in only 20% yield at room temperature after 2-3 days. ${ }^{3}$ Very interestingly, however, when the reaction was carried out in a water suspension medium in the presence of surfactants, flavanone 2a was obtained in quantitative yield. For example, a suspension of a mixture of powdered 2^{\prime}-hydroxychalcone $1 \mathbf{1 a}(1.0 \mathrm{~g}, 4.5$ $\mathrm{mmol}), \mathrm{NaOH}(8 \mathrm{M}, 0.1 \mathrm{ml})$ and sodium 1-dodecane sulfonic acid $(0.01 \mathrm{~g})$ in water $(10 \mathrm{ml})$ was stirred at room temperature for 1 h . The crude product was collected by filtration, washed with water and dried in a desiccator to give flavanone 2a (0.95 g, 95% yield). However, the reaction using no surfactant gave 2a in only 13% yield. Similarly, tetrabutylammonium iodide, tetrabutylphosphonium bromide, hexadecyltrimethylammonium bromide, glycine, l-alanine, L-proline and L-leucine were also effective for the conversion of $\mathbf{1 a}$ to $\mathbf{2 a}$ in a water suspension medium (Table 1)

It is also found that piperidine catalysed intramolecular cyclization reaction of $\mathbf{1}$ into $\mathbf{2}$ proceeds very efficiently in a water suspension medium (Table 2). The preparation of flavanone 2a is representative of the general procedure employed. For example, a suspension of powdered 2^{\prime}-hydroxychalcone 1a ($1.0 \mathrm{~g}, 4.5 \mathrm{mmol}$) in water $(10 \mathrm{ml})$ containing piperidine ($0.01 \mathrm{~g}, 0.12 \mathrm{mmol}$) was stirred at room temperature for 1 h . The crude product was collected by filtration, washed with water and dried in a desiccator to give flavanone 2a (0.98
$\mathrm{g}, 98 \%$ yield). Similarly, chalcones $\mathbf{1 b}, \mathbf{1 c}, \mathbf{1 e}, \mathbf{1 f}$ and $\mathbf{1 g}$ gave the corresponding flavanones $2 \mathbf{b}, \mathbf{2 c}, \mathbf{2 e}, 2 \mathbf{f}$ and $\mathbf{2 g}$, whilst $\mathbf{1 d}$ yielded a $45: 55$ mixture of $\mathbf{1 d}$ and $\mathbf{2 d}$ (Table 2).
2,3-Dihydroxyflavonol 3a has been reported to be formed in poor yield by treatment of 2^{\prime}-hydroxychalcone 1a with $\mathrm{NaOH}-$ $\mathrm{H}_{2} \mathrm{O}_{2}$ in organic solvents (Table 3). ${ }^{7,8}$ We have found that the conversion of 1a into 3a proceeds more efficiently in a water suspension medium and the products are isolated simply by filtration. For example, a suspension of a mixture of powdered 2^{\prime}-hydroxychalcone 1a ($0.10 \mathrm{~g}, 0.45 \mathrm{mmol}$), an aq. NaOH solution ($8 \mathrm{M}, 1.0 \mathrm{ml}$) and a 30% hydrogen peroxide solution $(0.25 \mathrm{~g})$ was stirred at room temperature for 2 h . The crude

Table 1 NaOH catalysed cyclization of 2^{\prime}-hydroxychalcone 1a to flavanone 2a

1a
2a

$\mathbf{1 a}$	2a
Additive	Yield (\%)
None	13
$\mathrm{Bu}^{\mathrm{n}} \mathrm{N}^{+} \mathrm{I}^{-}$	82
$\mathrm{Bu}^{n}{ }_{4} \mathrm{P}^{+} \mathrm{Br}^{-}$	80
$\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N}^{+} \mathrm{Me}_{3} \mathrm{Br}^{-}(\mathrm{CTAB})$	92
$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{SO}_{3}-\mathrm{Na}^{+}(\mathrm{SDS})$	95
Glycine	96
L-Alanine	99
L-Proline	92
L-Leucine	93

Green Context

The simplicity of a chemical process often correlates well with its 'greeness'. Multistep or multi-component reactions almost invariably lead to waste if only as a result of demanding separation steps. Here we see some examples of relatively simple one-step reactions that do not use organic solvents either in the reaction or in the work-up. By running the reaction as a suspension in water, the organic product can be separated simply by filtration with no work-up required. Simple basic catalysts are used to ensure fast reactions under moderate conditions. In one case hydrogen peroxide is used as an in-situ oxidant-ideal as the byproduct in the reaction medium, water.

JHC

Table 2 Piperidine catalyzed cyclization reaction of 2'-hydroxychalcones $\mathbf{1}$ to flavanones $\mathbf{2}$ in a water suspension medium

Compound	Ar	Yield (\%)
\mathbf{a}	Ph	98
\mathbf{b}	$o-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	95
\mathbf{c}	$m-\mathrm{MeOCH}_{6} \mathrm{H}_{4}$	96
\mathbf{d}	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	55
\mathbf{e}	$o-\mathrm{ClC}_{6} \mathrm{H}_{4}$	93
\mathbf{f}	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	94
\mathbf{g}	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	97

Table 3 Conversion of 2'-hydroxychalcone 1a to 2,3-dihydroflavonol 3a

1a			3a	
Reagent	Solvent	Temp.	Time/h	Yield (\%)
$\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}{ }^{a}$	MeOH	rt	3	49
$\mathrm{Et}_{2} \mathrm{NH}-\mathrm{H}_{2} \mathrm{O}_{2}{ }^{b}$	dioxane	$<5^{\circ} \mathrm{C}$	40	38
$\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	rt	2	100
${ }^{a}$ Ref. 7. ${ }^{b}$ Ref. 8.				

product was collected by filtration, washed with water and dried in a desiccator to give flavanol $\mathbf{3 a}$ ($0.10 \mathrm{~g}, 100 \%$ yield).

Experimental

Typical procedure for the conversion of 2^{\prime}-hydroxychalcones 1 into flavanones 2 in a water suspension medium

Crystals of 1a were finely powdered by grinding with a pestle and mortar for a few minutes. A suspension of a powdered 2^{\prime} hydroxychalcone $\mathbf{1 a}(1.0 \mathrm{~g}, 4.5 \mathrm{mmol})$ was stirred in water (10
$\mathrm{ml})$ containing piperidine $(0.01 \mathrm{~g}, 0.12 \mathrm{mmol})$ at room temperature for 1 h . The crystalline powder formed was filtered off, washed with water and dried in a desiccator to give flavanone 2a ($0.98 \mathrm{~g}, 98 \%$ yield). The crude crystals thus obtained were recrystallized from EtOH to give pure 2a as colorless needles. Data for 2a; mp 75-76 ${ }^{\circ} \mathrm{C}$; $v(\mathrm{C}=\mathrm{O}) 1718$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.04-7.96(9 \mathrm{H}, \mathrm{m}), 5.50$ (1 H , dd, J 3.0, 13.2), 3.11 (1 H , dd, J 13.2, 16.8), 2.90 (1 H , dd, J 3.0, 16.8).

Typical procedure for the conversion of 2^{\prime}-hydroxychalcones 1 into flavanols 3 in a water suspension medium

Crystals of 1a were finely powdered by grinding with a pestle and mortar for a few minutes. A suspension of a mixture of powdered 2^{\prime}-hydroxychalcone $1 \mathbf{1 a}(0.10 \mathrm{~g}, 0.45 \mathrm{mmol})$, an aq. NaOH solution ($8 \mathrm{M}, 1.0 \mathrm{ml}$) and a 30% hydrogen peroxide solution $(0.25 \mathrm{~g})$ was stirred at room temperature for 2 h . The crude product was filtered off, washed with water and dried in a desiccator to give flavanol 3a (0.10 g , 100% yield). Recrystallization of the crude product from MeOH gave pure 3a as colorless needles. Data for 3a; $\mathrm{mp} 178-180^{\circ} \mathrm{C} ; v(\mathrm{OH}) 3675$ $(\mathrm{OH}), v(\mathrm{C}=\mathrm{O}) 1718 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ 7.04-7.94 ($9 \mathrm{H}, \mathrm{m}$), 5.14 ($1 \mathrm{H}, \mathrm{d}, J 12.0$), $4.64(1 \mathrm{H}, \mathrm{d}, J 12)$.

References

1 M. Shimokororiyama, in The Chemistry of Flavonoid Compounds, ed. T. A. Geissman, Pergamon, NewYork, 1962, p 286.
2 S. V. Kostanecki and W. Szabranski, Ber. Dtsch. Chem. Ges., 1904, 37, 2634; S. Matsuura, YakugakuZasshi, 1957, 77, 298; C. M. Brennan, I. Hunt, T. C. Jarvis, C. D. Johnson and P. D. McDonnell, Can. J. Chem., 1990, 68, 1780.
3 K. Freudenberg and L. Orthner, Ber., 1922, 55, 1748; D. D. Keane, K. G. Marathe, W. I. O'Sullivan, E. M. Philbin, R. M. Simons and P. C. Teague, J. Org. Chem., 1970, 35, 2286; J. J. P. Furlong and N. S. Nudelman, J. Chem. Soc., Perkin Trans. 2, 1985, 633.
4 T. M. Harris and R. L. Carney, J. Am. Chem. Soc., 1967, 89, 6734; Y. Hoshino and N. Takeno, Bull. Chem. Soc. Jpn., 1986, 59, 2903; B. S. Goud, K. Panneerselvam, D. E. Zacharias and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1995, 325.
5 Z. Sanicanin and I. Tabakovic, Tetrahedron Lett., 1986, 27, 407.
6 F. R. Stermitz, J. A. Adamovics and J. Geigert, Tetrahedron, 1975, 31, 1593; R. Matsushima and H. Kageyama, J. Chem. Soc., Perkin Trans. 2, 1985, 743; G. Pandey, A. Krishna and G. Kumaraswamy, Tetrahedron Lett., 1987, 28, 4615; Y. Maki, K. Shimada, M. Sako and K. Hirota, Tetrahedron, 1988, 44, 3187.
7 L. Reichel, Justus Liebigs Ann. Chem., 1942, 553, 83.
8 S. Saxena, J. K. Makrandi and S. K. Grover, Synthesis, 1985, 110.

