Crystalline Inclusion Compounds of 2,2'-Dihydroxy-1,1'-binaphthyl with Alkali Metal Hydroxides and Ammonia

Fumio TODA,<sup>\*</sup> Koichi TANAKA, Man Chaun WONG,<sup>†</sup> and Thomas C. W. MAK<sup>\*†</sup>

Department of Industrial Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790 <sup>†</sup>Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

2,2'-Dihydroxy-1,1'-binaphthyl,  $C_{20}H_{14}O_2$ , forms crystalline inclusion compounds of stoichiometries  $1\frac{1}{2}C_{20}H_{14}O_2 \cdot 3MOH \cdot 8H_2O$  (M = Li,Na,K),  $C_{20}H_{14}O_2 \cdot CsOH \cdot 6H_2O$ , and  $2C_{20}H_{14}O_2 \cdot 2NH_3 \cdot CH_3OH$ . In the crystal structure of the NH<sub>3</sub> complex, the three molecular components are interlinked by hydrogen bonds to form a column with a hydrophilic stem and a hydrophobic sheath.

2,2'-Dihydroxy-1,1'-binaphthyl ( $C_{20}H_{14}O_2$ , commonly known as bis- $\beta$ -naphthol), 1, has been found to be a very effective host compound for the isolation<sup>1</sup> and optical resolution<sup>2</sup> of a wide range of organic guest species through the formation of crystalline inclusion complexes.<sup>3</sup> We now report the preparation and structural characterization of a series of new inclusion compounds (formulas 2 to 6) of 1 with alkali metal hydroxides and ammonia.



C<sub>20</sub>H<sub>14</sub>O<sub>2</sub> (1)

Typical procedures in preparing the complexes are as follows. When a mixture of 1 (1 g) and 20% aqueous NaOH solution (5 ml) was kept at room temperature for 12 h, colorless prisms (1.5 g, mp not clear) of 3 was obtained.

In a similar manner, 6 was obtained as colorless prisms (1.7 g, mp not clear) when a mixture of  $\frac{1}{2}$  (1 g) and 5 ml of methanol saturated with ammonia was kept at room temperature for 12 h.

Compounds 2 - 5 are air-sensitive but may be kept for weeks in a sealed tube without apparent decomposition. The alkali metal contents of 2 - 5 were determined by the flame emission technique using a Varian AA-4 atomic absorption spectrophotometer. In each instance a freshly prepared sample was quickly dried by pressing between filter paper and immediately weighed and dissolved for triplicate analysis. In the determination of cesium, a known excess of potassium was added as an ionization suppressor to enhance its emission intensity in the air-acetylene flame. The experimental results (% by weight: Li, 3.57; Na 9.92; K, 15.72; Cs 24.19) obtained for 2 - 5 were consistent with those (Li, 3.23; Na, 9.94; K, 15.81; Cs 24.42) calculated from the stoichiometric formulas  $1\frac{1}{2}C_{20}H_{14}O_2 \cdot 3MOH \cdot 8H_2O$  (M = Li,Na,K) and  $C_{20}H_{14}O_2 \cdot CSOH \cdot 6H_2O$ . The formulation of the isomorphous sodium and potassium complexes was substantiated by X-ray crystallographic analysis, but the lithium and cesium complexes did not yield suitable crystals for unit-cell and density measurements.

X-Ray crystallographic studies of 3, 4, and 6 proceeded in the same manner. Densities were determined by flotation in a mixture of hexane and carbon tetrachloride. A selected crystal was sealed inside a 0.5 mm Lindemann glass capillary, and intensity data were collected on a Nicolet R3m diffractometer using Mo- $\underline{K}_{\alpha}$  radiation ( $\lambda = 0.71069$  Å) as described previously.<sup>4)</sup> For 3 and 4 the intensities declined rapidly with increasing Bragg angle.

Crystal data: 3, FW = 693.81, tetragonal, space group  $\underline{I4}_{1}/\underline{a}, \underline{a} = 19.298(5)$ ,  $\underline{c} = 37.357(8)$  Å,  $\underline{V} = 13912(6)$  Å<sup>3</sup>,  $\underline{z} = 16$ ,  $\underline{F}(000) = 5839$ ,  $\underline{D}_{m} = 1.341$ ,  $\underline{D}_{c} = 1.325$  g cm<sup>-3</sup>, crystal size 0.40 x 0.24 x 0.20 mm<sup>3</sup>,  $\mu = 1.27$  cm<sup>-1</sup>,  $2\theta_{max} = 40^{\circ}$ , 2401 unique reflections, 1450 observed,  $\underline{R} = 0.218$ ; 4, FW = 741.94,  $\underline{a} = 19.303(6)$ ,  $\underline{c} = 37.549(8)$  Å,  $\underline{V} = 13991(7)$  Å<sup>3</sup>,  $\underline{F}(000) = 6223$ ,  $\underline{D}_{m} = 1.393$ ,  $\underline{D}_{c} = 1.409$  g cm<sup>-3</sup>, crystal size 0.42 x 0.40 x 0.32 mm<sup>3</sup>,  $\mu = 4.49$  cm<sup>-1</sup>,  $2\theta_{max} = 40^{\circ}$ , 2554 unique data, 1617 observed,  $\underline{R} = 0.275$ ; 6, FW = 638.76, monoclinic, space group  $\underline{P2}_{1}/\underline{c}$ ,  $\underline{a} = 11.136(2)$ ,  $\underline{b} = 19.853(5)$ ,  $\underline{c} = 15.314(3)$  Å,  $\beta = 91.36(1)^{\circ}$ ,  $\underline{V} = 3384.7(9)$  Å<sup>3</sup>,  $\underline{Z} = 4$ ,  $\underline{F}(000) = 1352$ ,  $\underline{D}_{m} = 1.250$ ,  $\underline{D}_{c} = 1.254$  g cm<sup>-3</sup>, crystal size 0.56 x 0.52 x 0.46 mm<sup>3</sup>,  $\mu = 0.87$  cm<sup>-1</sup>, 4848 unique reflections, 3671 observed,  $\underline{R} = 0.059$ . The structures were solved by direct phase determination guided by negative quartets.<sup>5</sup> All computations were performed on a Data General Nova 3/12 minicomputer with the SHELXTL package.<sup>6,7</sup>

In the crystal structure of 3 and 4, one host molecule (1) occupies Wyckoff position  $8(\underline{e})$  of site symmetry 2, whereas the other is in a general position. The structure is highly disordered, such that two alkali metal atoms and three of the water/hydroxide oxygen atoms failed to appear in a difference Fourier map. The single ordered metal atom is coordinated to a phenolic oxygen atom and two water/hydroxide oxygen atoms, but other atoms occupying the remaining ligand sites could not be located. The occurrence of liquid-like regions in the solid lattice may be a common structural feature of the newly-discovered crystalline inclusion compounds formed by phenol- and propynol-type hosts with alkali metal and ammonium hydroxides.<sup>8)</sup>



Fig. 1. Stereodrawing of the crystal structure of  $2C_{20}H_{14}O_2 \cdot 2NH_3 \cdot CH_3OH$ , §. The origin of the unit cell lies at the upper left corner, with <u>a</u> pointing towards the reader, <u>b</u> downwards, and <u>c</u> from left to right. The blackened, shaded, and open cirles represent C, N, and O atoms, respectively. Hydrogen bonds are indicated by broken lines.

The crystal structure of  $\xi$  is shown in Fig. 1. The phenolic groups, ammonia molecules, and methanol molecules are interlinked by hydrogen bonds to form a column with a hydrophilic stem and a hydrophobic sheath. Geometrical details of the hydrogen bonding in the stem are illustrated in Fig. 2. The crystal lattice is constructed from a lateral packing of such infinite columns, all of which are oriented in the direction of the <u>a</u> axis.



Atom numbering scheme for the asymmetric unit in 6.



Fig. 2. Details of the hydrogen bonding in the hydrophilic stem of a column in the crystal structure of 6. For clarity the aromatic rings have been omitted, so that molecule 1 [torsion angles  $C(1)-C(10)-C(11)-C(12) = 86.8(3)^{\circ}$  and  $C(21)-C(30)-C(31)-C(32) = -101.3(3)^{\circ}$ ] appears like 1,4-butanediol. Symmetry transformations:  $a^{a} 1-x$ , 1-y, 1-z;  $b^{b}-x$ , 1-y, 1-z;  $c^{c} 1+x$ , y, z;  $d^{d}-1+x$ , y, z. The standard deviation of each hydrogen bond length is about 0.007 Å.

We thank the Ministry of Education, Science and Culture for Grant-in-Aid for Special Project Research (Grant No. 61134038) and partial financial support from Dr. Ma Pui Han (Grant No. 183902000).

References

- F. Toda, K. Tanaka, G. Ulibarri Daumas, and M.C. Sanchez, Chem. Lett., <u>1983</u>, 1521.
- 2) F. Toda, K. Tanaka, and S. Nagamatsu, Tetrahedron Lett., 25, 4929 (1984).
- 3) F. Toda, K. Tanaka, and T.C.W. Mak, Chem. Lett., 1984, 2085.
- 4) F. Toda, K. Tanaka, and T.C.W. Mak, Bull. Chem. Soc. Jpn., <u>58</u>, 2221 (1985).
- 5) G.T. DeTitta, J.W. Edmonds, D.A. Langs, and H. Hauptman, Acta Crystallogr., Sect. A, 31, 472 (1975).
- G.M. Sheldrick, "Computational Crystallography," ed by D. Sayre, Oxford University Press, New York (1982), p. 506.
- 7) The atomic coordinates have been deposited with the Cambridge Crystallographic Data Centre. Structure factors are obtainable from the last author.
- 8) F. Toda, "Molecular Inclusion and Molecular Recognition Clathrates I," (Topics in Current Chemistry, Vol. 140), ed by E. Weber, Springer-Verlag, Berlin (1987), pp. 43-69. (Received July 20, 1987)