```
Optical Resolution of 2-Methylpiperazine by Complex Formation with
    Optically Active l-Phenyl-1-(o-chlorophenyl)prop-2-yn-1-ol and
            1,6-Diphenyl-1,6-di(o-chlorophenyl) hexa-2,4-diyne-1,6-diol
            Fumio TODA,* Koichi TANAKA, and Masaru KIDO\dagger
        Department of Industrial Chemistry, Faculty of Engineering,
                        Ehime University, Matsuyama 790
tLaboratories of Medicinal Chemistry, Tokushima Research Institute,
                Otsuka Pharmaceutical Co., Ltd., Tokushima 771-02
```

An efficient optical resolution of 2 -methylpiperazine was achieved by complex formation with the title host compounds. $X-R a y$ crystal structure of a $1: 2$ complex of $(S)-(+)$-piperazine and $(R)-$ (-) -1-phenyl-1-(o-chlorophenyl) prop-2-yn-l-ol was studied.

It is very difficult to obtain optically pure 2 -methylpiperazine ($\frac{1}{\sim}$). Only partial resolution has been achieved hitherto, by recrystallization of the 2methylpiperazinium ($2 R, 3 R$)-di-O-benzoyltartarate salt from MeOH , and (S)-(+)isomer (${\underset{\sim}{l}}_{\sim}^{a}$) of 44% ee and $(R)-(-)$-isomer ($(\underset{\sim}{d})$ of 30% ee have been obtained.

We succeeded in obtaining $l_{d a}$ and $d \mathfrak{d}$ in optically pure state by complexation of racemic $\underset{\sim}{l}$ with optically active host compounds, (R)-(-)-l-phenyl-l-(o-chloro2,3) phenyl) prop-2-yn-l-ol (2) and $(R, R)-(-)-1,6-$ diphenyl-1,6-di(o-chlorophenyl)-hexa-2,4-diyne-l,6-diol (${ }_{\text {人 }}$).

When a solution of racemic $\underset{\sim}{1}(100 \mathrm{~g}, \mathrm{l} \mathrm{mol})$ and $\underset{\sim}{2}(243 \mathrm{~g}, 1 \mathrm{~mol})$ in $\mathrm{BuOH}(50$ cm^{3}) was kept at room temperature for 12 h , a $1: 2$ complex of $\underset{\sim}{l}{ }_{\sim}^{a}$ and $\underset{\sim}{2}$ was obtained as colorless prisms, which upon three recrystallizations from BuOH gave pure crystals ($60 \mathrm{~g}, 20 \%$ yield, $\mathrm{mp} 85-87{ }^{\circ} \mathrm{C},[\alpha]{ }_{\mathrm{D}}-109^{\circ}(c 0.66, \mathrm{MeOH})$). Heating of the crystals in vacuo gave la of 100% ee by distillation ($9.5 \mathrm{~g}, 19 \%$ yield, ${ }^{[\alpha]}{ }_{\mathrm{D}}$ $+8.02^{\circ}(c 0.54, \mathrm{MeOH})$). When a solution of racemic $\underset{\sim}{l}(100 \mathrm{~g}, \mathrm{l} \mathrm{mol})$ and $\underset{\sim}{3}(242 \mathrm{~g}$, 0.5 mol) in $\mathrm{MeOH}\left(500 \mathrm{~cm}^{3}\right.$) was kept at room temperature for 12 h , a $1: 1$ complex of ld and \mathcal{N}^{3} was obtained as colorless prisms, which upon three recrystallizations

2

$\underbrace{3}_{2}$

$\begin{array}{cc} & \stackrel{1}{\sim} \\ \text { a: } & (S)-(+) \text {-form } \\ \text { b: } & (R)-(-) \text {-form } \end{array}$

b: (R) - (-) -form
from MeOH gave pure crystals (75 g, 26% yield, mp $86-88^{\circ} \mathrm{C},{ }^{[\alpha]}{ }_{\mathrm{D}}-101^{\circ}$ (c 0.22 , $\mathrm{MeOH})$). Heating of the crystals in vacuo gave 1 d of 100% ee by distillation (12.5
 the distillation can be used again for resolution. Treatments of the filtrate left after the former and the latter experiments with $\underset{\sim}{ }$ and $\underset{\sim}{2}$, respectively, gave d, d and da, respectively in the yield around 20\%.

The optical purity of $l a$ and $l d x$ can be determined by measuring ${ }^{l_{H}}{ }_{H}$ NMR spectra of their complexes with $\underset{\sim}{2}$ and $\left\{\right.$ in CDCl_{3}, because $\underset{\sim}{2}$ and \mathcal{Z} work as a chiral shift reagent. Methyl signal of racemic $\underset{\sim}{d}$ in the presence of two molar amounts of $\underset{\sim}{2}$ and an equimolar amount of 3 appeared as two doublet signals centered at $\delta 0.77$ and 0.90 and 0.77 and 0.83 ppm , respectively.

In order to know mechanism of the chiral recognition between $\underset{\sim}{1}$ and $\underset{\sim}{2}$ or $\underset{\sim}{3}$, $x-$ ray crystal structure of a $1: 2$ complex ($\underset{\sim}{4}$) of $\frac{1}{d}$ and $\underset{\sim}{2}$ was studied. Crystal data of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{OCl}(\underset{\sim}{4})$ are as follows: $\mathrm{FW}=585.58$, monoclinic, space group $\mathrm{P}_{1}{ }_{1}$, $\mathrm{a}=12.688(6), \mathrm{b}=7.920(4), \mathrm{c}=15.971(3) \stackrel{\circ}{\AA}, \mathrm{B}=104.82(3)^{\circ}, \mathrm{D}_{\mathrm{c}}=1.25 \mathrm{~g} / \mathrm{cm}^{3}$, $\mu=2.5 \mathrm{~cm}^{-1}$ and $Z=2$.

The cell dimensions and intensities were collected on a Synthex R3 four-circle diffractometer with graphite-monochromated Mo-K α radiation by the ω-scan mode within 2θ less than 45°. A total of 2947 independent reflections were collected, among which 2231 reflections (I>l.96o(I)) were stored as observed. The structure was solved by the direct method using MULTAN in Syntex program. All the hydrogen atoms except seven atoms were found on difference Fourier maps. A perspective drawing of $\underset{\sim}{4}$, including the numbering scheme, is shown in Fig. 1. Figure 2 shows the contents of the unit cell viewed down the b-axis. Bond lengths in $\underset{\sim}{4}$ are also shown in Fig. 1.

The refinement of atomic parameters was carried out by a block-diagonal leastsquares method. Thermal parameters were refined anisotropically for all the nonhydrogen atoms and isotropically for the hydrogen atoms. The final R-value was 0.068 .

Fig. 1. Host-guest interaction of $\underset{\sim}{4}$ and atom labelling, with the $\mathrm{OH} \cdot \cdots \mathrm{N}$ hydrogen bonds represented by broken lines. Bond lengths (\AA, standard deviations in parentheses) : ClA-C(1)A $1.750(9), C l B-C(1) B 1.733(8), O A-C(7) 1.425(8), O B-C(7) B$ $1.436(8), N(1) C-C(1) C 1.451(9), N(1) C-C(4) C 1.466(11), N(2) C-C(2) C 1.479(11)$, $\mathrm{N}(2) \mathrm{C}-\mathrm{C}(3) \mathrm{C} 1.425(12), \mathrm{C}(1) \mathrm{A}-\mathrm{C}(2) \mathrm{A} 1.383(10), \mathrm{C}(1) \mathrm{A}-\mathrm{C}(6) \mathrm{A} 1.363(12), \mathrm{C}(2) \mathrm{A}-\mathrm{C}(3) \mathrm{A}$ $1.385(12), C(2) A-C(7) A 1.530(10), C(3) A-C(4) A 1.420(12), C(4) A-C(5) A 1.298(13)$, $\mathrm{C}(5) \mathrm{A}-\mathrm{C}(6) \mathrm{A} 1.353(16), \mathrm{C}(7) \mathrm{A}-\mathrm{C}(8) \mathrm{A} 1.509(10), \mathrm{C}(7) \mathrm{A}-\mathrm{C}(10) \mathrm{A} 1.532(10), \mathrm{C}(8) \mathrm{A}-\mathrm{C}(9) \mathrm{A}$ $1.188(10), C(10) A-C(11) A 1.338(10), C(10) A-C 915) A 1.379(11), C(11) A-C(12) A 1.393(12)$, $\mathrm{C}(12) \mathrm{A}-\mathrm{C}(13) \mathrm{A} 1.4 .6(15), \mathrm{C}(13) \mathrm{A}-\mathrm{C}(14) \mathrm{A} 1.337(13), \mathrm{C}(14) \mathrm{A}-\mathrm{C}(15) \mathrm{A} 1.384(11), \mathrm{C}(1) \mathrm{B}-$ $\mathrm{C}(2) \mathrm{B} 1.391(11), \mathrm{C}(1) \mathrm{B}-\mathrm{C}(6) \mathrm{B} 1.386(12), \mathrm{C}(2) \mathrm{B}-\mathrm{C}(3) \mathrm{B} 1.375(10), \mathrm{C}(2) \mathrm{B}-\mathrm{C}(7) \mathrm{B} \mathrm{l} .561(10)$, C(3)B-C(4)B $1.458(14), C(4) B-C(5) B 1.328(14), C(5) B-C(6) B 1.355(12), C(7) B-C(8) B$ $1.436(9), C(7) B-C(10) B 1.504(9), C(8) B-C(9) B 1.161(10), C(10) B-C(11) B 1.387(9)$, $\mathrm{C}(10) \mathrm{B}-\mathrm{C}(15) \mathrm{B} 1.358(9), \mathrm{C}(11) \mathrm{B}-\mathrm{C}(12) \mathrm{B} 1.393(11), \mathrm{C}(12) \mathrm{B}-\mathrm{C}(13) \mathrm{B} 1.376(12), \mathrm{C}(13) \mathrm{B}-$ $C(14) B 1.366(11), C(14)-C(15) B 1.407(11), C(1) C-C(2) C 1.490(10), C(1) C-C(5) C$ $1.535(13), \mathrm{C}(3) \mathrm{C}-\mathrm{C}(4) \mathrm{C} 1.444(13)$.

In the crystal structure of $\underset{\sim}{4}$, two hydrogen bonds between $O H$ of $\underset{\sim}{2}$ and N of $\underset{\sim}{l}$ a play an important role to fix the host and guest molecules close together and to recognize chirality of each other efficiently in the crystalline lattice (Figs. l and 2). The combination of $\underset{\sim}{2}$ of (R)-configuration and $\underset{\sim}{1}$ of (S)-configuration ($1 \underset{\sim}{ }$) would be important to form the stable complex (${\underset{\sim}{4}}_{4}$), because $\underset{\sim}{2}$ does not form complex with $\underset{\sim}{l}$ of (R)-configuration ($1, R$). This is probably the same in the complex of $\frac{1}{\sim}$
 (S)-configuration (la). For the present, it is not clear why $\underset{\sim}{2}$ and $\underset{\sim}{3}$ of the same configuration include $\frac{1}{\sim}$ of the different configuration, $\frac{l}{d}$ and $\underset{d}{ }{ }_{d}, ~ r e s p e c t i v e l y$.

Fig. 2. The crystal structure projected along b-axis showing the hydrogen bonds (A).

From the Figs. 1 and 2 , the absolute configuration of $(+)-1$ can be determined directly to be (S), because the configuration of ($(-)-2$ has been determined to be (R). 2,3) This is identical with the reported (S) -configuration which has been (R) determined by an indirect method.

References

1) W. L. F. Argarego, H. Schou, and P. Waring, J. Chem. Res. (S), 1980, 133.
2) F. Toda, K. Tanaka, H. Ueda, and T. Ōshima, Isr. J. Chem., 25, 338 (1985).
3) M. Yasui, T. Yabuki, M. Takama, H. Tezuka, S. Harada, N. Kasai, K. Tanaka, and F. Toda, Chem. Lett., in press.
4) F. Toda, K. Tanaka, K. Nakamura, H. Ueda, and T. Ōshima, J. Am. Chem. Soc., lo5, 5151 (1983).
5) F. Toda, K. Mori, J. Okada, M. Node, A. Itoh, K. Oomine, and K. Fuji, Chem. Lett., 1988, 131.
