資源と素材 (Shigen-to-Sozai) Vol.119 p. 125-129 (2003) ©2003 The Mining and Materials Processing Institute of Japan

石炭灰フライアッシュからアルカリ水熱合成された potassium-chabazite の物性評価*

村	山	憲	${ m I\!S}^1$	田	辺	満	昭 ²	吉	田	晋	輔 ³
山	本	秀	樹 ⁴	芝	田	隼	次 ⁵				

Physical Property of Potassium-chabazite Obtained by Alkali Hydrothermal Synthesis from Coal Fly Ash

by Norihiro MURAYAMA^a, Mitsuaki TANABE^a, Shinsuke YOSHIDA^a,

Hideki YAMAMOTO^a and Junji SHIBATA^{a*}

 Department of Chemical Engineering, Faculty of Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka, 564-8680, Japan (*Corresponding author : FAX 06-6388-8869)

In order to characterize the potassium-chabazite (K-CHA) obtained by hydrothermal synthesis with KOH from coal fly ash, various physical properties such as crystal structure, textures of surface and cross section of particles, cation exchange property, acid-resistance and heat-resistance were investigated for the synthesized K-CHA product.

The particle size of the K-CHA product has a maximum point at $20 \,\mu$ m and a shape distribution. The particles of K-CHA consist of unreacted coal fly ash or coagulated fine particles of K-CHA as a nuclear. In case of pH over 4, the X-ray diffraction intensity of K-CHA decreases with a decrease in pH, but K-CHA crystals are not dissolved. On the other hand, K-CHA crystals are dissolved in the aqueous solution of pH below 4. In case of heat treatment below 873K, the X-ray diffraction intensity of K-CHA decreases with an increase in temperature, while the thermal decomposition of K-CHA and production of new crystalline materials do not take place. In the heat treatment of 1,273K, the peaks of K-CHA disappear in the XRD pattern and those of leucite newly generate. The K-CHA product contains about 10% of water and about 3% of unburned carbon.

KEY WORDS : Coal Ash, Fly Ash, Zeolite, Hydrothermal Synthesis, Functional Materials

1. 緒 言

エネルギー源の枯渇は、近い将来訪れるであろう地球規模での 問題である。石油資源の枯渇や原子力発電所の新設の困難性から、 我国では石炭火力発電が見直されつつある。石炭の見直しに伴っ て、石炭灰の排出量の大幅な増加が確実視されている。年間の排 出量が約800万tにものぼる石炭灰の再資源化は、日本の環境・リ サイクル問題に関する重要な課題の一つである¹⁾。

現状では、排出された石炭灰のうち約半分が主としてセメント 原料やコンクリートの混和材として再利用されている。しかしな がら、残りの半分は埋め立て処分場にて処理されている²⁾。セメ ントやコンクリート分野での需要量を拡大することや、国内にお ける埋め立て処分場を増設することのみでは、今後ますます増加 する石炭灰の処理法としてもはや対処できないことは明らかであ る。すなわち、大量消費される石炭灰の新しい用途開発が必要不 可欠である。1991年に、「再生資源の利用の促進に関する法律」の 中で、電気事業から発生した石炭灰については、積極的に再資源 化・リサイクルする方向が打ち出されている²⁾。石炭灰の有効利 用法の一つとして、石炭灰をアルカリ水熱処理して機能性材料で

* 2002 年 10 月 7 日受付 2003 年 2 月 5 日受理
1. 普通会員 工博 関西大学助手 工学部 化学工学科
2. 関西大学大学院生 工学研究科
3. 関西大学大学院生 工学研究科
4. 普通会員 工博 関西大学助教授 工学部 化学工学科
5. 普通会員 工博 関西大学教授 工学部 化学工学科
[著者連絡先] FAX 06-6388-8869(関西大・資源循環工学研究室)
キーワード:石炭灰,フライアッシュ,ゼオライト,水熱合成,機能性材料

あるゼオライトを合成し、様々な分野で利用するための研究が多 くの研究者³⁻¹¹によって行われている。

筆者らは,石炭灰フライアッシュから効率よくゼオライトを水 熱合成する方法^{12,13)},ゼオライトの生成過程^{14,15)}および反応生 成物のイオン交換特性^{16,17)},ゼオライト生成物の環境調和を考慮 した利用方法^{18,19)}についてすでに報告している。前報²⁰⁾では, 土壌改良材として用いるカリウム型ゼオライトを短時間で合成す ることを目的として,水酸化カリウムをアルカリ源として用いた 石炭灰フライアッシュからの potassium-chabazite(以下,K-CHA) の生成挙動について報告した。しかしながら,得られたK-CHA 生 成物の構造や性質については十分に検討されておらず,他の報告 例²¹⁾も極めて少ない。

本研究では、石炭灰フライアッシュから水熱合成された K-CHA のキャラクタリゼーションを行うことを目的として、K-CHA 生成 物の結晶構造、粒子表面および粒子断面の構造、耐酸性および耐 熱性などを調べた。

2. 実験方法および試薬

ゼオライトの原料として、石炭火力発電所から発生した石炭灰 フライアッシュ(電発コールテック(株)製)を用いた。これは、 JIS 規格に適合するフライアッシュとするために、粒度調整などの 物理的処理が施されたものである。100gのフライアッシュ乾燥物 と 400cm³ の 3.0mol/dm³ KOH を内容積 800cm³のオートクレーブ (耐圧硝子工業(株)製, TAS-08) に入れて、500rpmの攪拌下で 393K にてゼオライトの水熱合成を行った。ゼオライト合成の反応時間、 すなわち 393K での保持時間を 50h とした。水熱合成によって得られた反応生成物を水洗した後, 378K にて一昼夜乾燥させた粉末 をゼオライト生成物の試料として用いた。

上述のゼオライト生成物について,表面構造の観察,化学組成 の分析,結晶成分の同定および粒度分布の測定を,走査型電子顕 微鏡(日本電子(株)製,JSM-5410),エネルギー分散型蛍光X線 分析装置(日本電子(株)製,JED-2110),X線回折装置(日本電子 (株)製,JDX-3530)およびレーザー回折/散乱式粒度分布測定装置 (堀場製作所(株)製,LA-910)を用いて行った。

ゼオライト生成物の耐酸性を調べるために、lgの反応生成物を 種々のpHに調整した 40cm³の塩酸溶液と接触させて,生成物の 酸処理を行った。接触時間は 30min とした。ゼオライト生成物か ら溶出された Al³⁺ 濃度は,高周波プラズマ発光分光分析装置(島 津製作所(株)製,ICPS-1000 III)を用いて測定した。ゼオライト生 成物の耐熱性を評価するために、チューブ型電気炉(光洋サーモ システム(株)製,KTF030N)を用いて空気中で 473 ~ 1,273K にて lh保持することによって,生成物の熱処理を行った。上述の各処 理の前後において,生成物の表面構造やX線回折強度などの物性 がどのように変化するかを調べた。熱重量変化の測定には,熱重 量分析装置(島津製作所(株)製,TGA-50)を用いた。

3. 実験結果および考察

フライアッシュと反応生成物のX線回折パターンをFig.1(a),(b) に示した。Fig.1(a)より,フライアッシュの回折パターンはブロー ドな形状を呈しており,典型的な非晶質である。灰中に含まれる 結晶成分として,石英とムライトが確認された。一方,反応生成 物の回折パターンには,ゼオライトの一種である potassiumchabazite (K-CHA)に起因するピークが見られる。K-CHA は,その 結晶構造から生じる 3A オーダーの細孔を持っていること²²⁾,交 換性陽イオンとしてカリウムイオンを多く含んでいることが主な 特徴である。石炭灰から得られた K-CHA は,NH₃や H₂O などを 分子ふるい機能によって吸着したり,肥料成分であるカリウムを 含みかつ保肥性および保水性を併せ持つ土壌改良材として利用す ることが可能であると考えられる¹⁸。

500 (a) Coal fly ash n м 500 (b) Reaction product Diffraction intensity [cps] с С С C С С 500 (c) Heat treatment at 873K C C c C С 500 (d) Heat treatment at 1273K ۱L 0 0 10 20 30 40 50 60 Diffraction angle 2 θ [Degree (CuK α)] Q: quartz, M: mullite, C: potassium-chabazite, L: leucite

ゼオライト合成の原料であるフライアッシュと K-CHA 生成物

Fig.1 X-ray diffraction patterns of coal fly ash and reaction products before and after heat treatment

Sample		Coal fly ash	Product	
	Si	47.0	39.9	
Content [%]	AI	25.8	19.4	
	к	3.2	26.9	
Si/Al ratio [-]	1.82	2.06	
Cation exchange capaci	ty [meq/100g]	18.8	261.8	
Median diameter	[µm]	29.6	19.5	
Ignition loss [%]	2.8	2.5	

の化学的および物理的性質を Table 1 に示す。フライアッシュに 含まれる主な金属成分は、ケイ素とアルミニウムで約73% を占め る。一方、水熱合成して得られた K-CHA ではカリウムの含有量 が増加し、ケイ素、アルミニウムおよびカリウムが約86% を占め ている。K-CHA の陽イオン交換容量の値は262meq/100g であり、 フライアッシュの18.8meq/100gと比較して14倍程度増大してい る。メジアン径は、水熱処理前後で29.6µm から19.5µm まで減 少した。未燃炭素分に起因する強熱減量は、フライアッシュおよ び反応生成物とも約3% であった。

上述のフライアッシュおよび K-CHA の X 線回折パターン,化 学組成および陽イオン交換容量の値は,前報²⁰⁾より引用した。本 研究では,K-CHA 生成物に対して,結晶構造,粒子表面および粒 子断面の構造,耐酸性および耐熱性などの物性評価を行った。

フライアッシュと K-CHA 生成物の粒度分布曲線を Fig.2 に示した。フライアッシュは、1 μ m から 200 μ m までの幅広い粒度分布を呈しており、13 μ m および 80 μ m 付近に極大値を持つ。一方、 K-CHA 生成物の粒度分布曲線は、20 μ m 付近に極大値を持つ シャープな形状である。フライアッシュの粒度分布と比較すると、 10 μ m 以下および 50 ~ 100 μ m の粒子の割合が減少し、10 ~ 30 μ m の割合が大幅に増加している。一方、約 150 μ m 以上の粒子の割合がわずかに増加する傾向が認められる。

フライアッシュから水熱合成して得られるゼオライト生成物 は、アルカリによってフライアッシュから溶解したアルミノシリ ケートが未溶解のフライアッシュ粒子表面にゼオライト結晶とし て析出した混合体である場合が多い^{6,14,20)}。K-CHA 生成物の断 面を SEM によって観察した結果を Fig.3 (a)-(c) に示した。粒子の 外表面に見られる白色部分が K-CHA の結晶層であり、内部の黒

Slurry concentration: 0.01%

Fig.2 Particle size distribution of coal fly ash and reaction product obtained in 3.0mol/dm³ KOH at 393K for 50h

(b) Cross section of particles co with potassium-chabazite

(c) Cross section of particle containing fine coagulated particles

Fig.3 SEM photographs of cross section of reaction products obtained in 3.0mol/dm³ KOH at 393K for 50h

色部分が未反応のフライアッシュである^{6,20)}。Fig.3(a) に示すよう に、得られた反応生成物は、未溶解のフライアッシュとその表面 を覆う数µm 程度の K-CHA の結晶からなる混合体である。生成物 の粒子断面写真からは、その内部が未溶解のフライアッシュから 構成される構造 (Fig.3(b)) と、微細な K-CHA 生成物同士が凝集体 を形成したものを中心核とする構造 (Fig.3(c)) がそれぞれ認められ た。Fig.3(c) のような構造は、粒子断面の径が 20µm を超える比較 的大きい場合について多く見られた。

Fig.2 および Fig.3 で得られた結果を併せて考察すると, 粒子表面に析出した K-CHA 結晶は, 未溶解のフライアッシュおよび微細な K-CHA 生成物の凝集体をそれぞれ核として形成された経緯が考えられる。フライアッシュが KOH によって溶解されると, その粒子径は小さくなることを考慮すると, K-CHA 生成物の粒度分布曲線がシャープになる理由として, 微細な K-CHA の凝集体を核とする粒径の大きい K-CHA が新たに生成することが一因であると考えられる。

ゼオライト生成物の耐酸性は、イオン交換体や触媒として用い る際に重要な性質である^{22,23)}。得られた K-CHA 生成物の懸濁液 の自然 pH は、1g/40cm³のスラリー濃度において約 10.5 である。 この pH よりも酸性の水溶液に懸濁させたときの K-CHA の X 線回 折強度を調べた。K-CHA 結晶の酸溶解に伴う Al³⁺ 濃度と K-CHA の X 線回折強度を pH の関数として Fig.4 に示した。pH4 ~ 10 の 領域では、pH の低下に伴って K-CHA の X 線回折強度は緩やかに 減少する。pH が 4 以下になると、pH 低下に伴って K-CHA の X 線回折強度は急激に減少し、回折パターンのバックグラウンドと ほぼ変わらない値(約 40cps)となる。一方、K-CHA の酸溶解に起 因する Al³⁺の溶解量は、pH が 4 以上ではほぼ 0 であるのに対し て、pH が 4 以下になるとその溶解量は著しく増大する。

K-CHA 生成物の表面構造におよぼす pH の影響を Fig.5(a)-(e) に

2000

250

示した。pH=5.7 での粒子表面の構造は,K-CHA 生成物の表面構 造とほとんど変わらない。pH=3.4 の場合には,K-CHA の結晶層 にひび割れが生じたり,一部剥離されている様子が観察される。 pH=3.1 では,酸溶解によって剥離されたK-CHA の結晶層が細か く砕けている。pH=0.9 においては,K-CHA の結晶層は内部のフ ライアッシュ粒子から剥離され,その結晶層の破片が細かく分散 している現象が認められる。 Fig.4 および Fig.5 の結果から,pH が4以上の領域では,pH が

Fig.4 および Fig.5 の結果がら、pH が 4 以上の領域では、pH が 低下するにつれて K-CHA の X 線回折強度は低くなるが、結晶自 体が溶解するまでには至らないと考えられる。一方、pH が 4 以下 に低下すると、K-CHA の結晶が酸によって溶解し、最終的には未 反応のフライアッシュから完全に剥離されることがわかった。し たがって、K-CHA 生成物を陽イオン交換体として用いる場合、少 なくとも pH が 4 以上の環境であることが望ましい。

ゼオライトの結晶構造に基づく細孔を吸着剤として利用する場合には、ゼオライトの脱水処理が有効な場合がある²²⁾。触媒として利用する際には、ゼオライトの耐熱性を知ることが重要である

(a) Reaction product

(b) pH=5.7

(c) pH=3.4

Fig.4 Acid-resistance property of reaction product obtained in $3.0 mol/dm^3 \, KOH$ at 393K for 50h

資源と素材 Shigen-to-Sozai Vol.119 (2003) No.3

^{22,23)}。得られた K-CHA 生成物について,その熱物性および耐熱 性を調べた。

K-CHAのX線回折強度を熱処理温度の関数としてFig.6に示し た。1,073K 以下の領域では、K-CHA の X 線回折強度は熱処理温 度の上昇とともに直線的に低下する傾向が認められる。熱処理後 の生成物の X 線回折パターンを Fig.1(c),(d) に示した。Fig.6 の結 果と同様に,873Kの熱処理ではK-CHAのX線回折強度は低下し ているが、新たな結晶性物質のピークは認められない。一方, 1,273Kにて熱処理を行うと、K-CHAのピークがほとんど消失し、 leucite と呼ばれるアルミノケイ酸カリウムのピークが新たに生成 する。すなわち, 1,273K での熱処理では, K-CHA から leucite へ の結晶転移が生じることを示唆する結果が得られた。

熱処理後の K-CHA 生成物の表面構造を Fig.7(a)-(d) に示した。 873K および 1,073K の熱処理では、熱処理前の表面構造 (Fig.5(a)) とほとんど変わらない。熱処理温度が1.273Kの場合には、粒子表 面が滑らかな状態に変化している様子が観察される。この表面構 造の変化は, Fig.1(d) で見られた leucite の生成に起因すると考え られる。以上の結果から、1,073K以下の熱処理では、温度の上昇 とともに K-CHA の X 線回折強度は低下するが, K-CHA 結晶の熱 分解や新たな結晶性物質の生成は起こらないと考えられる。

フライアッシュおよび K-CHA 生成物の熱重量変化を Fig.8 に示 した。フライアッシュの場合には、約 900K までは顕著な重量減 少は認められないが、それ以上の温度では、未燃炭素分の燃焼に 起因する 2.8% の重量減少が生じる。一方, K-CHA については, 約 530K までの領域で顕著な重量減少が,530 ~ 900K の領域では 緩やかな重量減少が起こった。併せて、昇温速度の影響を調べた 結果、その影響は極めて小さいことがわかった。このような熱重 量変化は、いくつかの天然産 K-CHA の熱重量変化²⁴⁾とおおむね 一致した。1,073K 以下の熱処理では K-CHA の結晶自体は熱分解 されないことを考慮すると,530~900K で見られる一連の重量減

少は、主として K-CHA に含まれる水に基づくものと考えられる。 900K 以上の温度での重量減少は、フライアッシュの場合と同様 に、未燃炭素分の燃焼に起因するものと考えられる。1,023Kにお ける K-CHA 生成物の重量減少は 13.9% であった。重量減少の理 由を上述のように仮定すると、生成物である K-CHA 中には約10% の水と約3%の未燃炭素が含まれるものと推定される。ゼオライ トに含まれる大部分の水を除去するためには、少なくとも 600K 程 度の熱処理が必要であると考えられる。

亖 4. 結

本研究では、石炭灰フライアッシュから水熱合成された potasium-chabazite (K-CHA) のキャラクタリゼーションを目的とし て, K-CHA 生成物の物性評価, すなわち結晶構造, 粒子表面およ び粒子断面の構造, 耐酸性および耐熱性などの物性評価を行った。

K-CHA 生成物の粒度分布曲線は、20µm 付近に極大値を持つ シャープな形状である。生成物粒子は、その内部が未溶解のフラ イアッシュから構成されるものと、微細な K-CHA 生成物の凝集 体から構成されるものが存在する。K-CHA 生成物の耐酸性を調べ た結果、pH4以上の領域では、pHが低下するにつれて K-CHAの X 線回折強度は減少するが,結晶自体が溶解するまでには至らな い。pHが4以下になると、K-CHA結晶の酸による溶解が起こり、 未溶解のフライアッシュから K-CHA が剥離される。873K 以下の 熱処理を行った場合,熱処理温度の上昇とともに K-CHA の X 線 回折強度は低下するが, K-CHA 結晶の熱分解および新たな結晶性 物質の生成は起こらない。1,273K での熱処理では, K-CHA のピー クが消失し, leucite のピークが新たに生成する。生成物である K-CHAには、約10%の水と約3%の未燃炭素が含まれる。

得られた K-CHA 生成物の内部には未反応部が存在するが、生

(a) heat treatment at 873K for 1h

(b) heat treatment at 1073K for 1h

(c) heat treatment at 1273K for 1h Fig.7 Change in surface texture of products obtained by heat treatment at various temperatures

成物粒子の表面層は K-CHA 結晶で占められている。ここで得ら れた K-CHA 生成物の造粒物を陽イオン交換体として用いる場合 は、固液接触する表面の K-CHA 層が陽イオン交換に大きく関与 するので、K-CHA 生成物の性能は K-CHA 純品のそれに近づくと 考えられる。

謝辞 本研究の一部は,関西大学ハイテクリサーチセンターの助成金により行われました。深く感謝の意を表します。

References

- T. Owada, H. Fanasaka, K. Ozasa and Y. Sakurai : Proc. Int. Workshop on Novel Products from Combustion Residues, (Morella, 2001), pp.53 – 58.
- Nihon Furaiasshu Kyokai and Kankyo Gijyutu Kyokai : Sekitanbai Handobukku, Second edition, (Tokyo, 1995), pp. II1 – II12.
- T. Henmi and E. Sakagami: Jinko Zeoraito ga Tikyu wo Sukuu, (Japan Times, Tokyo, 1998), pp.35-47.
- 4) T. Henmi: New Ceramics, 7(1997), 54-62.
- M. Meguro, J. Haruna, T. Noda and T. Kanamaru : Haikibutu Gakkai Ronbunsyu, 8(1997), 280-287.
- N. Shigemoto, K. Shirakami, S. Hirano and H. Hayashi : Nippon Kagaku Kaishi, 5(1992), 484-492.
- Y. Katou, K. Kakimoto, H. Ogawa, M. Tomari, E. Sakamoto and S. Asahara: Kogyo Yosui, 338(1986), 37-45.

- 8) X. Querol, F. Plana, A. Alastuey and A.L. Soler: Fuel, 76(1997), 793 799.
- 9) C.F. Lin and H.C. His: Environ. Sci. Technol., 29(1995), 1109-1117.
- 10) V. Berkgaut and A. Singer: Applied Clay Sci., 10(1995), 369 378.
- C.L. Choi, M. Park, D.H. Lee, J.E. Kim, B.Y. Park and J. Choi: Environ. Sci. Technol., 35(2001), 2812 – 2816.
- N. Murayama, Y. Yamakawa, K. Ogawa and J. Shibata: Shigen-to-Sozai, 116(2000), 279-284.
- N. Murayama, Y. Yamakawa, K. Ogawa, H. Yamamoto and J. Shibata: Shigen-to-Sozai, 117(2001), 501 – 505.
- N. Murayama, K. Ogawa, Y. Nishikawa, H. Yamamoto and J. Shibata: Shigen-to-Sozai, 116(2000), 509-514.
- 15) N. Murayama, H. Yamamoto and J. Shibata: Int. J. Miner. Process., 65(2002), 1-17.
- Y. Takami, J. Shibata, H. Yamamoto, N. Murayama and K. Ogawa: Shigen-to-Sozai, 117(2001), 495 – 500.
- N. Murayama, S. Yoshida, Y. Takami, H. Yamamoto and J. Shibata: Sep. Sci. Technol., (in press).
- J. Shibata, N. Murayama and H. Yamamoto: Proc. TMS Annual Meeting, EPD Congress 2002, (Seattle, 2002), pp.241 – 249.
- N. Murayama, S. Yoshida, H. Yamamoto and J. Shibata : Proc. MMIJ Fall Meeting(2002), Vol.CD, pp.23–24.
- 20) J. Shibata, S. Yoshida, N. Murayama and H. Yamamoto : Shigen-to-Sozai, 118(2002), 419-424.
- 21) H. Segawa, H. Ando, K. Suzuki and S. Mitsui: Toku Kou S56-149313.
- 22) N. Hara and H. Takahashi: Zeoraito, (Koudansya, Tokyo, 1975), pp.58-218.
- 23) H. Tominaga: Zeoraito no Kagaku to Oyo, (Koudansya, Tokyo, 1987), pp.117-156.
- 24) R. Szostak : Handbook of Molecular Sieves, (Van Nostrand Reinhold, 1992), p.123.