An Alternative Symmetry for Large-Scale Structures in Channel Flow
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Applying bifurcation analysis in conjunction with direct numerical simulation, two
distinct nontrivial equilibrium states in plane Poiseuille flow are obtained. The two
states are distinguished by the symmetries imposed. One of these states is of the
same form as the exact coherent structure obtained previously by Waleffe. The
other state has a pair of counter-rotating streamwise vortices that can develop
across the channel midplane, and may provide an exact expression for large-
scale structures observed in fully turbulent flow. A truncated dynamical model
describing these states predicts that streaky components induced by large-scale
circulations spanning the whole of the channel width may survive even in the limit
of infinite Reynolds number.

1 INTRODUCTION

Despite the significant progress made since Reynolds’ classic experimental observations of 1883,
understanding of turbulence remains incomplete, and continues to be a key area of research activity
in physics. In the limit as the Reynolds number tends to infinity, turbulent channel flow may be
considered to be a multiple system consisting of weakly coupled dynamical systems with hierarchical
scales.

At the bottom of the hierarchy, the smallest scale turbulent fluctuations are produced by a
number of coherent structures cultivated in the thin high-shear layer near the boundary. Low-
speed streaks and streamwise vortices’? are considered to be the representative structures in this
layer, and can be educed®? as an equilibrium state by manipulating a balance. For the case of
plane Couette flow (PCF), with increasing Reynolds number this state is likely to bifurcate in
a self-sustaining cyclic process (SSP)>® embedded in turbulence. It has recently been further
suggested that the equilibrium state also constitutes the basin? of the turbulent attractor. The
resulting theoretical estimation of the threshold of perturbation necessary for turbulent transition is
indispensable to state-of-the-art turbulence control techniques® . Applying the numerical method
proposed® into pipe flow, Wedin and Kerswell® obtained traveling wave solutions (TWSs), one of
which emerges via a saddle-node bifurcation at a value of the Reynolds number that finds good
agreement with the experimentally observed critical Reynolds number for turbulent transition.

A fully-developed turbulent state in a channel is not achieved until the coherent structures at the
top of the hierarchy propagate fluctuations across the whole of the channel. The resultant universal
law of the wall is established subject to scaling laws of the hierarchy from the near-wall to the top (i.e.
largest-scale) structures (LSSs). In seeking to better understand turbulence in channel flows, it is
thus important to identify the LSSs. One promising candidate to describe the LSSs is the structure
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composed of streamwise vortical circulations accompanied by low-speed streaky regions of the outer
scale (i.e. of the order of the width of the channel), which has recently been attracting a great deal
of research attention'®'? . The LSSs may be self-sustained by some mechanism, or otherwise may
be induced by a merging behavior of near-wall structures owing to spanwise modulation'® or by a
cluster of ejection events accompanied with the passage of a streamwise-aligned packets of hairpin
vortices'¥) . Although such scenarios have been proposed for the formation process of LSSs, there
is still insufficient consensus on what precisely defines the nature of these structures.

In the present study, considering possible symmetries for the TWS of plane Poiseuille flow
(PPF), we will present exact expressions for LSSs spanning the whole of the channel width. It will
be shown that such structures originate at a Reynolds number relatively lower than expected, which
may be the starting point at which the scale separation in turbulent flow begins. Furthermore, based
on a truncated dynamical model, we predicts that asymptotic structures of the present solutions
survive in the limit of infinite Reynolds number. This suggests the present solutions may be relevant
to the description of LSSs observed in fully turbulent channel flow.

2 NUMERICAL METHOD

First suppose a channel between infinite parallel plates (walls) filled with incompressible New-
tonian fluid, which is driven by a constant pressure gradient imposed in the downstream direction.
A Cartesian coordinate system is introduced with the z,y and z axes in the streamwise, wall-
normal and spanwise directions, respectively, and the origin located on the channel mid-plane.
Based on a non-dimensionalization employing half the channel width (h), a representative velocity
and the kinematic viscosity coefficient, the incompressible Navier-Stokes equation is expressed as
Su+u-Vu=-Vp+ Rle—V2u + f , where Re, is the Reynolds number defined in terms of
the constant imposed pressu;‘e gradient. Including the pressure gradient in the forcing term, f,
allows us to assume that both pressure, p, and the velocity field, u, are periodic in the streamwise
and spanwise directions with respective periodic lengths, L, and L,. Including additional artificial
terms in f to produce streamwise vortices we have

f=- 2 ez + C1{(1 — y®) cos (k.2)e, + %y sin (k.2)e,} + Co{ —ycos (k,2)e, + = sin (k,2)e.} ,
Re, k. k,

where e; denotes the unit vector in the direction of ith space variable, and k, = 2n/L,. Note that

solutions obtained in the limit of both C; and C, vanishing are exact solutions of pure PPF, for

which the laminar state is represented as u = (1 — y?)e,.

Henceforth, we assume that the equations have a TWS with streamwise phase velocity, ¢, and
that the solution satisfies two of the three symmetries detailed in the Appendix. We expand un-
known variables in Fourier-modified-Chebyshev series satisfying the boundary conditions. Taking
into account the imposed symmetries as well as the continuity equation, we can finally deduce from
the governing equation quadratic equations for the reduced independent coefficients of the series
and c. The quadratic equations are solved numerically by Newton-Raphson (NR) iteration.

3 RESULTS

An initial guess for the NR iteration is provided by a numerical simulation for time-development
of the channel flow with C; = 0 but C; # 0 under the constraints of the symmetries, .4 and B.
The numerical scheme used is based on that of Ref. 4. If a solution is locally stable for a set of
parameters and is close enough to the initial conditions of the simulation in phase space, then the
flow field attained eventually by the long-time simulation generally provides a good initial guess for
the NR iteration. Fig. 1 shows a projection of a trajectory of the time-development of a trial run.
In the projection, an exact TWS is represented as a fixed point, because the solution is steady in a
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Fig. 1: The trajectory showing the time-development of PPF with a nonzero C; calculated by
numerical simulation is projected onto the plane spanned by EZ?° and EZ2P, which denote the 2-

and 3-dimensional norms of the spanwise component of velocity field, respectively. The point P
corresponds to the quasi-stable state that is eventually achieved by prolonged calculation.

frame of reference moving with the phase velocity of the solution on the z — z plane. Adopting the
fixed point P shown in the figure as an initial guess for the NR iteration, we obtained two TWSs at
Cy = C; = 0 by the method of continuation of solutions. These solutions emerge via a saddle-node
bifurcation in an Re,-c projection at around Re, ~ 2400 for (L, L,) = (m, 7).

We additionally searched for another TWS under the constraints of the symmetries A and
C. Performing again the continuation method with the aid of numerical simulation at C; = 0 but
Cy # 0, we obtained a further two new solutions converged at C; = C, = 0. From 3-dimensional
visualization, as well as the comparisons of the lowest Reynolds number at which these solutions
exist, it is, however, concluded that the solutions are the same as the TWSs of PPF obtained
previously by Waleffe!®) . Hereafter, for convenience, we refer to these solutions as W solutions,
and the upper and lower branches are denoted by WU and WL, respectively.

Streamwise vortices of the present solution can develop across the channel mid-plane, which
is illustrated in Fig. 2(a). By contrast, for the vortices of the W solution (Fig. 2(b)), the channel
mid-plane can perhaps be regarded as acting like a ceiling, preventing the vortices from spanning
the whole channel width. This is because we do not impose a reflection symmetry on the channel
mid-plane (C) for the present solutions shown in Fig. 2(a), but such a symmetry is imposed on
the W solutions. (The reason why the original W solutions satisfy the reflection symmetry may be
readily understood if it is recalled that these solutions were found by homotopy from PCF solutions.)
Furthermore, note that a streamwise vortex centered in y < 0 is coupled with one centered in y > 0,
which leads to the formation of large-scale circulations occupying most of the channel width, as seen
from the streamlines. For example, the pair of vortices with positive w, centered at A and B are
involved in a large circulation with positive w, spanning the region 0 < 2 < 7/2 and -1 <y < 1.

If such a circulation penetrates into the near-wall regions, a correlation between the turbulent
fluctuations produced on the upper and lower walls may be a subtle but definite observable in
experiments'® . On the other hand, the evolution of the circulation in the channel would prevent
pure W solutions from realizing in turbulent PPF. In order to qualitatively examine the preference
of the PPF, we performed the direct numerical simulation without imposing any symmetry, using as
the initial conditions an artificial streaky structure attached on the lower wall with a controlled small
3-dimensional disturbance, “shooting method”, introduced in Ref.4. After the flow approached to
the TWS, it wandered around on the basin boundary of turbulence for a long time!®1?) . The flow
finally achieved tends to spontaneously satisfy the the symmetry B rather than C in the relatively
large Reynolds number (Fig. 3 (a)). Note that the near-wall regions are almost laminar and that the
LSS is only seen in the center region. This characteristics of the snapshot at high Re is reminiscent
of the present solution shown in the Fig. 2(a). As the simulation is performed with the spanwise
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Fig. 2: (a) Streamwise vortices of the present solution for (Re,, L, L,) = (2400,7,7) are vi-
sualized by vector field of (w*?,v*"), and its streamlines in the (z,y) plane, where f*°(y,z) =
L% J f(z,y,z)dz. (b) Same as (a), but for the W solution for (Re,, Ly, L.) = (1006, m, Zr).

extent L, = 0.4m, which is not same as in Fig. 2(a), the accordance would be a casual coincidence.
(The dependence of the preferred symmetry of PPF on L, is the subject of a future study.) However,
this fact suggests that the present solution, i.e. its continuations at high Re, might be embedded
in fully developed channel turbulence and play a crucial role there if it exists.

4 DISCUSSION

Due to the lift-up mechanism, the large-scale circulations as well as the streamwise vortices
promote low-speed streaky regions across the channel mid-plane (Fig. 3 (b)). It may be noted that
the wavy modulation shown in the figure bears a similarity to that observed in the W solution with
half the spanwise length. Indeed, a further similarity between the W and our solutions can be seen
in Fig. 2(a), where the pair of counter-rotating regions still exist on both the walls, for instance,
A’ against A, or B’ against B, as C’ against C. Therefore, the mechanism underlying the present
solution can be considered to be effectively two SSPs attached to the background shear layers in
y > 0 and y < 0. Note that W solutions of spanwise length L,/2 satisfy symmetry B as well as A
and C. If a subharmonic perturbation with circulations spanning the whole channel width is added
to a W solution with L,/2, it is possible that the present solution may be realized via a bifurcation
from the W solution after breaking symmetry C. This suggests that the two SSPs may operate
across the channel mid-plane for PPF.

Wang et al.”) presented numerical evidence that an asymptotic structure of WL in PCF
remains in the limit of infinite Reynolds number. This had also been predicted by a truncated
dynamical model for SSP, the so called fourth-order model, developed originally to describe turbulent
motion in simple shear flows. If we assume that all the z-dependent perturbations are phase-locked
and that the non-slip condition is buffered by turbulent fluctuations in the near-wall region, then
an analogous simplification may also be applied to the dynamics underlying LSSs in PPF.

Taking into account the symmetries and energy conservation, we will constitute the dynam-
ics by principal modes of the LSS: mean velocity profile (M), streamwise vortices (V), streaky
component induced by the vortices (U), z-dependent perturbations (W), large-scale circulations
(R), and streaky component induced by the circulations (S);
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Fig. 3: (a) The cross sectional view of the flow (Re = 12000) achieved by the shooting method with
imposing no symmetry. The contours for u are from 0 to 1 with increments of 0.1. The grey-level
contour levels for w; range from —0.3(black) to 0.3(white). (b) The pattern of the low-speed streaky
region of the present solution for (Re,, L, L,) = (2400, w, ), which is visualized by contours of u
at y = 0. Contour levels are from 0.66(black) to 0.78(white) with increments of 0.02.
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Following Ref.18, the eigenmodes of the Stokes operator for the modes, M, V, U, R and 9, are here de-
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termined as cos (kyy)e,, —k, sin (2k,y) cos (2k.2)e,+k, cos (2k,y) sin (2k,2)e,, — cos(k,y) cos (2k,2)e,,

k; cos (kyy) cos (k.z)e, +k, sin (kyy) sin (k.2)e;, and sin (2k,y) cos (k.z)e, respectively, where ky=
7/2. The coefficients in the model, o; and «;, which are deduced by substituting the sum of the
modes into a simplified Navier-Stokes equation, are all supposed to be positive, even for long-
wavelength perturbations.

The only extension introduced to the fourth-order model is the additional inclusion of the modes,
R and S, which were neglected in the earlier model due to a symmetry in PCF. For PPF, low
momentum fluid distributed near both the walls is lifted up towards the channel mid-plane not only
by streamuwise vortices attached on the walls (V') but also by large-scale circulations (R), and so
two SSPs may interact. The resulting streaky component (U) with wavelength 2k, is observable
at the channel mid-plane, while the streaky component (S) with wavelength k, is observable at
one-quarter of the channel height.

Assuming that a steady solution is expressed in a power series of Re, the algebraic system of the
equations deduced from the present model possesses four non-trivial steady solutions at least. The
two of them, WU and UL, are inherited from the fourth-order model. The other two are nontrivial
steady solutions bifurcated from WU and WL via pitchfork bifurcations (here denoted as U and
L, respectively). The asymptotic behaviors of U and L are shown in Table 1. These asymptotic
behaviors are reminiscent of the LSSs that have been captured as a secondary flow scaled with
very long streamwise length at high Reynolds numbers in PPF'V) . Since a governing equation for
R is not provided in the present model in order to avoid the difficulty due to introducing another
three-dimensional perturbation with the spanwise wavenumber k., a degree of freedom, a, remains
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Table 1: The asymptotic scaling of principal modes for structures in PCF and PPF are predicted
from truncated dynamical models. While L exists only for 0 < «, U does for —1/4 < o, where
B(a) = 2a for —1/4 < @ < 0 and B(a) = 0 for 0 < a. The scaling of WU and WL, which were
obtained for PCF, are taken from Ref.18.

| M-1 U 1% 1% S R

WU | O(Re™) O(Re™'72) O(Re %) O(Re™*%) 0 0

WL | O(1) o(1) O(Re™) O(Re™) 0 0
U | O(Re™'™P@) O(Re™?) O(Re™Y?) O(Re™®*) O(Re™/*7%) O(Re'™®)
L | 0Q) 0(1) O(Re™")  O(Re™)  O(Re™@) O(Re™17%)

unfixed. If we can assume o = 0, the mode S (A, ~ 2h) as well as mode U (), ~ h) may persist
as dominant structures in spite of the damping of circulations. This could also be realized in an
SSP-like autonomous system closed only by M, R, S and its three-dimensional perturbation with
the spanwise length 2h. The survival of mode S would thus seem to be potentially relevant to the
spanwise scale of the LSS reported as A, =~ 2h in Ref.11 and A\, = 1.3h ~ 1.7h in Ref.12 .

5 SUMMARY

In summary, this study sought to find nonlinear solutions to the Navier-Stokes equations that
are relevant to the top of the hierarchy of dynamical systems that characterize turbulent channel
flow. In contrast to the previous W solutions, the present solutions possess structures that span the
full width of the channel. The direct numerical simulation implied that the LSSs in PPF prefers
to the symmetry B than C. A truncated dynamical model suggested that the present solutions
may arise from subharmonic bifurcations from the WU and WL solution branches. The model
further predicted the survival of certain asymptotic structures of our solutions in the limit of infinite
Reynolds number, with scalings that find tentative agreement with recent DNS results. For PCF, it
has been recently reported that WL is stable against spanwise subharmonic perturbations.” Possible
future studies arising from this work would thus include a detailed analysis of this inconsistency.
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A  Symmetry
The symmetries imposed on the solutions are defined by the rule
[ttty Uz, DT (2,9, 2) = [Ua, pyy, oz, DI (E + Vi, iy, 12+ 12)
where (piy, i1, Vg, V,) are constants determined according to the particular symmetry, A, B or C:
A. Streamwise translation and spanwise reflection, (uy, f12, Vs, v2) = (1,1, L,/2,0).

B. Upside-down reflection with spanwise shift, (g, 1;, Vg, ;) = (=1,1,0, L,/2).

C. Upside-down reflection, (uy, tz, vz, v.) = (—1,1,0,0).
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