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Molecular Dynamics Study of Solvent Transport in Nanoscale Osmosis

Tomoaki Itano, Takeshi Akinaga, Masako Sugihara-Seki

Department of Pure and Applied Physics, Faculty of Engineering Science, Kansai University

Suita, Osaka, 564-8680, Japan

An ideal of osmotic equilibrium between an ideal solution and pure solvent separated by a

semi-permeable membrane is studied numerically using the method of molecular dynamics.

The osmotic flow is observed as the inflow of the solvent across the membrane from the dilute

to the concentrated side. The validity of van’t Hoff’s law for osmotic pressure is confirmed

over a wide range of concentrations. It is found that the law is established by a balance

between non-uniform partial pressures of solute and solvent. Furthermore, the present model

permits an understanding of the mechanism of the osmotic flow in the relaxation process as

the liquids evolve from the initial state to the equilibrium state. We focus in particular on

the interaction between solute and solvent.

KEYWORDS: osmosis, ideal solution, molecular liquids, membrane processes, relaxation pro-
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1. Introduction

Osmosis is a fundamental physical process encountered in many fields of study, including

biology, chemistry and medicine, as well as physics. It is well known that the permeability of

most of biological and artificial membranes to water is greater than their permeability to many

dissolved solutes. Suppose that a dilute solution is separated from a more concentrated solution

by such a semi-permeable membrane, with both solutions subject to an external pressure. A

movement of solvent through the membrane from the dilute to the concentrated side, the

so-called osmotic flow, will be driven spontaneously. However, the consequent difference in

the hydrostatic pressures either side of the membrane acts to oppose this flow. This difference

in the magnitudes of the pressures is the original definition of osmotic pressure. The static

equilibrium state that is finally reached subject to the osmotic pressure is termed “osmotic

equilibrium”. As an example of the application of osmotic pressure, the physiological saline

used to maintain living tissue is normally designed to be isotonic to body fluids, since otherwise

the osmotic pressure acting on membranes can give rise to the rupture of blood vessels and

tissues.

The formulation of osmotic equilibrium was first established by J. van’t Hoff1) in 1887.

Since then, the formulation of the thermodynamics used to determine osmotic pressure has

been refined by many studies.2) The present study considers osmotic flow and osmotic equi-

librium from a kinetic molecular theory perspective. Murad & Powles3) and Raghunathan &
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Aluru (2006)4) recently adopted such a perspective, using specialized models for specific sol-

vent/solute pairs to model osmotic equilibrium. In contrast, in the present study, it is intended

to adopt a simple model to educe the underlying mechanisms of osmotic equilibrium that are

valid for a range of solvent/solute combinations, and also to examine the relaxation process

that occurs in order for the equilibrium to be established. It is of interest to determine whether

consideration of molecular motions, even under the simplest conditions, can lead to the same

results as those obtained by van’t Hoff. Furthermore, such an approach may provide a more

vivid picture of molecular motions, both of the equilibrium state, and also in the relaxation

process as the solution evolves towards this equilibrium state.

Thus, in the present study, first we employ a molecular dynamics simulation to numerically

reproduce a real liquid. Next, upon introducing an ideal solution of the liquid, and applying

this solution to a reservoir separated into two regions by an idealized semi-permeable mem-

brane, we then use this model to realize an ideal of osmotic equilibrium. We examine the

validity of van’t Hoff’s law for this system. Finally, investigating the non-uniformity of the

partial pressure of solute and solvent, we will discuss the mechanism of the osmotic flow,

focusing in particular on the interaction between solute and solvent.

2. Formulation

We employ molecular dynamics (MD) to investigate a conventional micro-canonical en-

semble of N mono-atomic molecules, enclosed in a reservoir with a volume V . The molecules

interact through a two-body potential of Lennard-Jones type, φ(r) = 4ε{( r
σ )−12 − ( r

σ )−6},
with cutoff radius rcut = 2.5σ. With this configuration, our task is to integrate the equations

of motion according to classical mechanics, md2xi
dt2

=
∑

j( 6=i) f(xj − xi), where m denotes

the mass of both the solvent and solute molecules, xi is the position of the i-th molecule at

time t and f(r) = −∂φ
∂r

r
r . We adopt the velocity Verlet method with ∆t = 5 × 10−4 as the

time-development scheme, applied together with the neighbour list method5) (see6) for more

details).

Henceforth, all the quantities will be measured in the following dimensionless units: The

lengths are specified in units of σ, the energies in units of ε, and masses in units of m. For argon,

σ = 3.405 Å, ε/kB = 119.8 ◦K and mNA = 39.95 g, and the time unit is therefore
√

σ2m/ε =

2.16ps. Throughout the present study, the density of the molecules is kept constant at 0.807,

which is comparable to that of liquid argon. The thermodynamical quantities presented here

are the long-time averages, denoted by 〈·〉 = 1
T

∫ T
0 dt(·), unless noted otherwise.

3. Results

3.1 Liquid in a cubic reservoir

First, we show that our Lennard-Jones model molecular system can be considered to be

in the liquid phase for the selected parameter values, and not in gas or solid phases. With this
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Table I. Values of parameters and thermodynamical quantities for the reservoirs of the present study

and the Lennard-Jones molecular systems they contain. The density is fixed at ρ = 0.807, while

the temperature is kept within a small range, kBθ = 0.833 ∼ 0.838, by manipulating the initial

conditions of the simulations. Periodic boundary conditions are denoted by ’P’, while the reflective

boundary conditions are denoted by ’R’.

N Lx Ly Lz B.C. T kBθ p −[P]xx −[P]yy −[P]zz

pc1 512 8.59 8.59 8.59 P 200000 0.8376 0.9790 n/a n/a n/a

pc2 4096 17.18 17.18 17.18 P 200000 0.8380 0.9799 n/a n/a n/a

rc1 512 8.59 8.59 8.59 R 200000 0.8338 0.9856 0.9865 0.9866 0.9865

rc2 4096 17.18 17.18 17.18 R 200000 0.8355 0.9881 0.9884 0.9885 0.9885

rr1 2 × 512 2 × 8.59 8.59 8.59 R 200000 0.8368 0.9873 0.9346 1.0155 1.0153

rr2 2 × 4096 2 × 17.18 17.18 17.18 R 70000 0.8383 0.9931 0.9660 1.0074 1.0072

aim, we will estimate the pressure of an assembly of real argon atoms equivalent to our system,

and then show that this assembly is in the liquid phase. The pressure can be calculated by

applying Clausius’ virial theorem to our system: par = N
V kBθ+ 1

6V

∑
i6=j〈(xi−xj) ·f(xj−xi)〉,

where θ is the temperature, which is related to the total kinetic energy of the molecules by

〈Ek〉 = 3
2NkBθ. Following Verlet,5) the contribution to the second term on the right-hand

side by the i-th and j-th molecules at a distance over the cutoff length (|xi − xj | > rcut) can

be approximated using the radial distribution function g(r), and so finally we obtain

par ≈ N

V
kBθ +

1
6V

∑
j 6= i

|xi − xj | ≤ rcut

〈(xi − xj) · f(xj − xi)〉 +
N2

6V 2

∫ ∞

rcut

∫ π

0

∫ π

−π
g(r)rf(r) · dr.

Henceforth, we label the sum of the first and second terms on the right-hand side of the above

equation by p, and the third term by p′. Table I details the configurations and parameter values

of the simulations presented in the present study. In the first two test problems considered

in this study, pc1 and pc2 in Table I, all the molecules are restricted in a cubic reservoir of

dimensions Lx, Ly and Lz, which denote lengths in the x, y, and z directions respectively of

the Cartesian coordinate system (x, y, z), with periodic boundary conditions imposed on all

the boundary surfaces. For these two systems, p is 0.98, while p′ is −0.70 by approximating

g(r) = 1 for r > rcut, hence par is approximately 0.28. With reference to the phase diagram

shown in Fig. 1, these two systems thus correspond to the liquid phase of argon. This pressure

value is smaller than the corresponding values calculated on the basis of the equation of

state for the Lennard-Jones molecular fluid realized by Johnson et al7) (par = 0.303) and

recently by Boltachev et al8) (par = 0.317). This difference is largely attributable to the

present approximation to g(r), but is also due to the present values of N and rcut being

smaller than the values used in these other studies. We additionally confirm that our system
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Fig. 1. The compressibility factor βpar/ρ as a function of β = 1/kBθ. The plotted curves correspond

to isochores ρ = 0.88, 0.85, 0.75 obtained from the MD calculation by Verlet.5) The values of the

compressibility factor for the first two studies in this paper, pc1 and pc2 in Table I, are indicated

by the cross. The dashed curves correspond to vapour-liquid and solid-liquid coexistence states,

found in the experimental study of Din.9)

is in the liquid state by reference to the θ-ρ projection of phase diagram for a Lennard-Jones

molecular fluid.10)

The pressure calculation based on the virial theorem demonstrated above is generally con-

sidered to be applicable to fluid in a reservoir with periodic boundaries; that is an open system

without realistic walls. However, the theorem was derived on the assumption that the walls of

the reservoir are rigid, reflecting molecules in collision with it, and being thus responsible for

imposing the experimentally measurable external pressure. It is therefore more appropriate to

simulate a rigid-walled reservoir, so that we can measure the pressure following the original

derivation in the theorem. Accordingly, the subsequent studies, rc1 and rc2 in Table I, con-

sider a Lennard-Jones molecular fluid in a cubic reservoir enclosed by six square, rigid walls,

at which all molecules are reflected in perfectly elastic collisions. The collision of molecules

with hard-walls is simulated by applying the velocity Verlet method with a procedure given

by the following steps: (1) ∆t′ is set to be ∆t, (2) the distribution of molecules are devel-

oped up to the minimum collision time t′ occurring within ∆t′, which is predicted by solving

quadratic equations for the collisions of all the molecules, based on the velocity obtained from

the time-development scheme, (3) the normal component of velocity of a molecule in collision

with a wall is reversed and ∆t′ is reset to be ∆t′− t′, (4) the above two steps are re-examined
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until ∆t′ = 0, (5) return to (1). The relative error in energy that arises due to the use of

the velocity Verlet method, is confirmed to be less than 0.01 % for the longest time scale

performed, T ∼ 105.

The normal stresses (i.e. diagonal components of the stress tensor ) for the fluids of these

two systems were measured by calculating the impulse of molecules against the examined

walls of the reservoir. For example,

[P]xx =
1

LyLz
〈
∫

LyLz

ds · f(t)〉,

where ds = nds, in which ds is an infinitesimal area on a wall surface with n denoting a

unit outward-pointing normal to the surface at this point, and f(t) is the force acting on the

reflected molecules by this area of the wall. According to Pascal’s principle, the three normal

stresses in a classical liquid in a static state are all expected to take the value −p due to

isotropy. With reference to Table I, it can be seen that the normal stresses for cases rc1 and

rc2 are in accordance with this principle. This implies the validity of the measurement of the

pressure based on computing the impulse of molecules against the walls. Furthermore, it can

also be seen from the table that the systems are not significantly affected by changing the

boundary conditions from periodic to reflective conditions (cf. pc1 with rc1 and pc2 with rc2).

3.2 Liquid in a rectangular-parallelepiped reservoir

We next consider two configurations, rr1 and rr2, which both use domains given by

rectangular-parallelepiped reservoirs of size Lx = 2Ly = 2Lz. For both these configurations,

the reservoirs are again filled with Lennard-Jones molecules, of the same density as that for

the cubic reservoirs of the previous configurations. Table I displays the values of p and [P]ii for

these configurations, again measured on the basis of the virial theorem and the measurement

of impulse on the wall. It should be noticed that for these two configurations, while [P]yy

and [P]zz are similar in value, the value of [P]xx differs from that of the other two normal

stresses. This suggests that these two systems may be anisotropic despite the fact that they

are static at the macroscopic level. Since anisotropy of the stress tensor under a static state

is common in solid phases, but is not common in liquid or gas phases, one may perhaps be

tempted to conclude that our molecular fluids are partly crystallized. However, investigating

the trajectories of the molecules in these systems, we confirmed that none of the molecules

are trapped in tiny regions of the reservoir for a long time.

It may be further noted that for test problems rr1 and rr2 the values of the normal stresses

(see Table I) all deviate from the negative of the pressure p obtained from the virial theorem

. However, this does not constitute a contradiction between the calculations based on the

impulse and the theorem. If we relax the assumption of isotropy of the stress tensor in the
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Fig. 2. (a) Contour plot of the ratio of the local density to the mean density is calculated in a thin

layer of thickness ∆x ≈ 0.5 at the x = −8.59 wall of a cubic reservoir with reflective boundaries

(rc2). The contour levels are 0.6, 0.8, 1.0 and 1.2. The density is relatively low near the edges,

especially near the vertices, but is otherwise comparable with the mean density. (b) Same as (a)

but for the case of an alternative Lennard-Jones fluid with rcut = 6
√

2σ (hard-core potential). The

contour levels are 1.2, 2.0, 3.0 and 4.0 . The density is high near the edges and vertices of the

reservoir.

derivation of pressure in the virial theorem, we obtain the following relation:

p = −1
3

(
[P]xx + [P]yy + [P]zz

)
,

which is satisfied for cases rr1 and rr2.

The difference between the value of [P]xx and that of the other two normal stresses prob-

ably results from the size effect of the reservoir, because the difference is larger in rr1 than

in rr2. Roughly speaking, pressure depends on density. Thus, the local density of molecules

is anticipated to be non-uniform near the walls, which could be prominent in these nanoscale

reservoirs. As will be discussed in the next paragraph, this may account for the anisotropy

of the normal stress. Indeed, we found that the local density of molecules is relatively low

around the edges and vertices of the reservoirs. It is also interesting to note that this phe-

nomenon occurs even in the cubic reservoirs with reflective boundaries, rc1 and rc2. As an

example, the local density in a thin layer near a wall of cubic reservoir in rc2 is shown in

Fig. 2(a). This figure suggests that the overall shape of the bulk fluid in rr1 and rr2 is a

rectangular-parallelepiped with rounded edges and vertices.

Given the low density of molecules in a layer adjacent to the walls of the rigid-walled

reservoir, it is of interest to consider the effective volume for a liquid confined in such a

reservoir (where the effective volume for a liquid confined in a reservoir with periodic boundary

conditions at the walls is of course V ). A simple measure can be derived if we simply assume
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that there are no molecular collisions within a distance redge of the walls of the reservoir (i.e.

that the liquid occupies an effective volume Veff = LxLyLz−4r2
edge(Lx+Ly +Lz)+O(r3

edge) <

V of rectangular parallelepiped shape), and further assume that the effective pressure is the

same at any rectangular wall. Equating the effective pressures at walls x = Lx/2 and y = Ly/2,

we thus have
PxxLyLz

(Ly − 2redge)(Lz − 2redge)
=

PyyLxLz

(Lx − 2redge)(Lz − 2redge)
,

and so redge is estimated as 0.63 and 0.58 for rr1 and rr2 respectively. These values are fairly

smaller than the reservoir scale. As our molecular fluid occupies most of the overall reservoir

except for the relatively tiny volume around the edges and vertices, the evaluation of stress

based on the impulse on the walls measured within a finite time is supposed to be justified.

To understand the reason for the decrease in local density at the edges and vertices of the

reservoir, we performed an extra simulation with the short cutoff length rcut = 6
√

2σ (hard-core

potential) in rc2, in which molecules interact only by the repulsive part of the Lennard-Jones

potential. At the equilibrium state of this simulation (Fig. 2(b)), the local density at the edges

and vertices of the reservoir is relatively higher than the mean density, in contrast to the case

with rcut = 2.5σ . This comparison suggests that the reduction of local density at the edges

and vertices is likely to be accounted for by the surface tension yielded by the long-range

attractive interaction among the molecules.

3.3 Solutions separated by a semipermeable membrane

Using the molecular liquid described above, in the remainder of this letter we will construct

a model of ideal osmotic equilibrium. For osmotic equilibriums in more realistic configurations,

the reader is referred to refs. 3,11 and 4. Here, we focus rather on the ideal osmotic equilibrium

under a purely idealized situation. As illustrated in Fig.3, the configuration of system rr2

allows us to obtain a numerical solution for an equilibrium state of ideal solution in contact

with a pure solvent across an idealized semi-permeable membrane. This system consists of

N = 8192 Lennard-Jones molecules, n1 of which are solute molecules with the remainder

(n0 = N − n1) being solvent molecules. Here, the suffices i = 0, 1 refer to the molecule

species, solvent and solute, respectively. Consider a semi-permeable membrane of infinitesimal

thickness located at x = 0, dividing the reservoir into two equal-sized regions A and B as shown

in the figure. The initial state is obtained by randomly choosing n1 solvent molecules in region

A to be solute molecules at the aforementioned equilibrium state ( attained from simulations

performed in rr2 with neither the solute nor the membrane present ). Note that the only

difference between solute and solvent molecules in the system is given by the effect of the

membrane on these molecules’ motions: As well as being confined by the reservoir’s walls,

the solute molecules are also confined in the region A (x < 0), engaging in perfectly elastic

collisions with the membrane at x = 0. In contrast, the membrane has no effect on the motion
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Fig. 3. A schematic view of the x − y projection of the reservoirs (rr1 and rr2). A semi-permeable

membrane at x = 0 (the thick-dashed line) separates the reservoir into two regions, A and B.

The n0 solvent molecules are represented by open circles (◦), while the n1 solute molecules are

represented by close circles (•). The membrane prevents the solute molecules from leaking out of

region A, and so the liquids found in regions A and B are a solution and pure solvent, respectively.

The thick arrows describe the pressure forces acting on the boundary surfaces and membrane in

the x-direction.

of the solvent molecules, with these molecules confined only by the reservoir walls. Thus,

for n1 > 0, region A (x < 0) contains solution, whereas region B (x > 0) contains only pure

solvent. It should be noted that the solution can be considered as an ideal solution, because the

forces of interaction between solvent and solute molecules are identical to those acting between

the solvent molecules themselves. We carried out simulations for n1 = 25, 50, 100, 200, 400 and

800. For simplicity, if we suppose the mean number of molecules in the region A is N/2, the

range of the concentration of the solution considered here corresponds to 0.006 ∼ 0.2 in mole

fractions (0.21 M ∼ 6.6 M) .

Denoting the number of the molecules in regions A and B at time t as nA(t) and nB(t),

respectively, one should examine the long-time average of the excess of nX (X=A,B) over

N/2 = 4096, which is referred to as 〈∆nX〉 in what follows. Figure 4 shows the dependence of

〈∆nA〉 on the concentration n1/VA. For the case of no solute we have 〈∆nA〉 = 〈∆nB〉 = 0,

owing to the symmetry of the system. With increasing n1, 〈nA〉 increases (and 〈nB〉 decreases)

linearly, but with a slope an order of magnitude smaller than that expected for the dilute

case, as shown in the figure. Note that if the interactions between molecules were negligible,

as in a dilute gas, then 〈∆nA〉 = n1/2 would be satisfied exactly. In addition, taking into

account that an equilibrium state attained with no solute is adopted as the initial distribution

for the molecules, we may consider 〈∆nA〉 as the net number of the solvent molecules that

dynamically pass through the membrane in the evolution from the initial equilibrium state.
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Fig. 4. The dependence of 〈∆nA〉, the long-time average of the excess of nA(t) over N/2(= 4096), on

the concentration n1/VA.

Thus, the increase of 〈∆nA〉 with n1 means that dissolving solutes in the solution results in

osmotic flow.

Next, let us discuss the osmotic pressure in the systems. We can here consider four kinds of

pressures derived from the calculation of impulses: PA-
0 and PA-

1 are the partial pressures on the

wall of the reservoir at x = −Lx/2 effected by the solvent and solute molecules, respectively,

PB+
0 is the pressure on the wall of the reservoir at x = +Lx/2 effected by solvent molecules

and PA+
1 is the pressure on the membrane at x = 0 effected by solute molecules. We assume

that the membrane is fixed to the reservoir in such a way so as to maintain its position at

x = 0 against pressure PA+
1 . The long-time average of the net force on the reservoir should

vanish, from which we obtain the momentum conservation equation

PA-
0 + PA-

1 = PA+
1 + PB+

0 .

Because the osmotic pressure is originally defined as the excess pressure of the region A over

B that is necessary to prevent a net movement of solvent across the membrane, for the present

system the osmotic pressure is given by (PA-
0 +PA-

1 )−PB-
0 , that is, PA+

1 . The osmotic pressure

PA+
1 is shown plotted for different concentrations n1/VA by the circles in Fig. 5. Clearly the

osmotic pressures found by the present simulations are in excellent agreement with van’t

Hoff’s law for values of n1/VA up to 0.04; the law thus appears to be valid over a wide range

of concentrations.

4. Discussion

In Fig. 5, we show the partial pressure effected by the solute at x = −Lx/2, PA-
1 (the

crosses in the figure). Clearly PA-
1 deviates significantly from PA+

1 , even for the relatively

dilute cases. Thus it is clear that a spatial non-uniformity of the solute partial pressure exists
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Fig. 5. The dependence of the partial pressures of solute molecules at the membrane, PA-
1 (×), and

at the wall of the reservoir at x = −Lx/2, PA+
1 (◦), on the concentration n1/VA. The dashed line

displays values found by van’t Hoff’s law.

in the solution region of the reservoir, even for the ideal case considered in the present study.

Taking the aforementioned equation of momentum conservation into account, we can also

deduce from this deviation that PA-
0 < PB+

0 . Solvent is, however, kept at rest in the equilibrium

state from a macroscopic viewpoint. Therefore, we conclude that the net force exerted by the

walls, LyLz(PB+
0 − PA-

0 ), acts on solvent in the negative x direction, and, moreover, that the

equivalent force exerted on the solvent by the interaction with the solute molecules is directed

in the positive x direction at a macroscopic level.

To understand the spatial distribution of the solute-solvent interaction force and its time

development, we introduce P1→0(x), the local force per unit volume exerted on the solvent by

the solute in the positive x direction, which is defined below by summing over all solute-solvent

interactions. Referring to the work by Raghunathan and Aluru,4) we here adopt

P1→0(x)∆xLyLz =
∑
i,j

′fj→i · ex ,

where ex is the unit vector in the x direction, the summation over j is taken over all the

n1 solute molecules while that over i is over all the solvent molecules located between x and
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x + ∆x. Furthermore, we also introduce the effective potential for solvent U1→0(x) as

U1→0(x) = −
∫ Lx/2

x
P1→0(x)dx .

It should be noted that the dimension of U1→0(x) is that of “stress” in mechanics, but this

potential is not a stress in a strict sense, because it relates to the interaction between different

types of matter simultaneously occupying the same region of space. Note that (U1→0(x) −
U1→0(Lx/2))LyLz corresponds to the force exerted on the solvent by the solute between x

and Lx/2. Therefore, ∆ULyLz represents the total interaction force exerted on the entire

solvent by the entire solute, where ∆U = U1→0(−Lx/2)−U1→0(Lx/2). Additionally, we have

that ∆U = PA−
1 − PA+

1 = PB+
0 − PA−

0 at the equilibrium state. Figure 6 shows P1→0(x)

taken at the initial state (a), at an intermediate time (b), and at the osmotic equilibrium state

(c), for the case n1 = 800.

In the equilibrium state (see Fig. 6(c)), some oscillation in P1→0(x) at the left end of

reservoir is clearly observed, which is due to a surface effect caused by the reflective wall

located at x ≈ −Lx/2. This is because the molecules tend to exist only at discrete positions

near the wall, x ≈ −Lx/2,−Lx/2 + d,−Lx/2 + 2d, · · · , where d = 6
√

2. This is confirmed by

reference to the spatial distribution of local density, which exhibits peaks at these positions.

In a more realistic situation, the wall would consist of atoms tethered somehow to lattice

sites, so that the peaks would be less distinct. This surface effect is restricted to a layer in a

neighbourhood of the wall, approximately described by x < −12 for the present configuration,

and so it does not significantly affect the results for osmotic flow and pressure, which are the

quantities of particular interest to the present study.

For −12 ≤ x ≤ −2, U1→0(x) exhibits a plateau-like profile, which implies that the net

force exerted on the solvent by the solute is negligible across this relatively wide zone of region

A. On the other hand, as can be seen in Fig. 6(c), within a narrow region (−2 < x < 2) about

the membrane, P1→0(x) exhibits an inverted M-shaped profile, while across this region, with

increasing x, the value of U1→0(x) first rapidly increases, then decreases before increasing

again to zero. Thus the bulk of the total interaction force, ∆U , that the solute exerts on

the solvent is accounted for by this narrow region, with this force exerted in the positive x

direction.

This localization of the solute-solvent interaction can be understood intuitively as follows

(see Fig. 7). In the equilibrium state, there is an abrupt change in the local density of the

solute (and, to a lesser extent, the local density of the solvent) across the membrane. Solvent

within a small layer [x, x+∆x] inside region A is squeezed equally from both sides of the layer,

x and x + ∆x, by the solute molecules distributed uniformly around the solvent. By contrast,

close to the membrane, while solvent molecules are pushed in the positive x direction by the

solute molecules in region A via the interaction force, there is no counteracting force applied
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Fig. 6. For n1 = 800, the x component of the local force per unit volume exerted on the solvent by

the solute, P1→0(x), and the effective potential for the solvent due to solute-solvent interaction,

U1→0(x). (a) At t = 0,(b) at t = 100 and (c) at the osmotic equilibrium state t > 40000. The

initial state (a) is obtained from the average of more than 60 MD simulations of a pure solvent

using different initial conditions.

from region B in the negative x direction, due to the absence of solute in region B. Thus there

is a net force in the positive x direction applied to solvent molecules around the membrane,

and this results in the localization of the solute-solvent interaction in a neighbourhood of

the membrane described above. The repulsive part of the Lennard-Jones potential plays an
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x

Fig. 7. The force exerted on solvent molecules (◦) by solute molecules (•) in region A (left) and

across the membrane (shown by the central dashed line ), in the equilibrium state.

essential role in this localization, while the effect of the attractive part is also reflected in the

couple of small kinks of the P1→0(x) profile, as seen around x ≈ ± 6
√

2 in Fig. 6(c) .

We next consider the time-development of the solute-solvent interaction. The initial solute-

solvent interaction is larger than that at the equilibrium state. Figure 6(a) shows the statistical

average of P1→0(x) and U1→0(x) for the initial conditions ( where 800 solvent molecules in

the region −Lx/2 < x < −Lx/4 are randomly selected to be solute molecules from an initial

molecular distribution that is the statistical average of many equilibrium states obtained

from solvent-only simulations). In the initial state, the profile of P1→0(x) exhibits similar

oscillations in a neighbourhood of the wall at x = −Lx/2 as are observed for the equilibrium

state in Fig. 6(c) . This phenomenon can again be explained in terms of the surface effect that

is present for the equilibrium state attained with no solute present, and does not significantly

affect the quantities of particular interest in the present study. We do note, however, the Λ

shape of the P1→0(x) profile in the region −10 < x < −7. This region accounts for the bulk

of the solute-solvent interaction, ∆U ≈ 0.4, which is almost 4 times larger than that of the

equilibrium state.

Given some simple assumptions, it can be demonstrated that ∆U is, moreover, a conserved

quantity with time in a statistical sense in the early stages of the diffusion. Figure 6(b) shows

P1→0(x) and U1→0(x) taken at t = 100, when there are still relatively few solute molecules

near the membrane. From the figure, we can observe that, while solute molecules diffuse in

region A and approach the membrane with increasing time, PA+
1 and ∆U are approximately

maintained at the values 0 and 0.4, respectively, while the Λ-shaped section of the P1→0(x)

profile continues to spread out until the first solute molecule touches the membrane.

Once this Λ-shaped profile has reached the membrane, and sufficient solute molecules

become distributed in a neighbourhood of the membrane, ∆U gradually decreases with in-

creasing time, and asymptotically approaches 0.1 in the equilibrium state. The decrease of ∆U

is qualitatively accounted for by the “increase of support of the solvent by the membrane” in

solute-solvent interaction. That is, by interrupting the diffusion of the solute from region A

to B, the membrane begins to support the solvent molecules around the membrane in region
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Fig. 8. The time developments of the osmotic pressure PA+
1 , and the difference of the pressure in

region B compared to the initial pressure in region B obtained from the solvent-only molecular

simulations, PB+
0 − 〈PB+

0 〉. The value obtained for 〈PB+
0 〉 is obtained from more 60 MD solvent-

only simulations employing different initial conditions.

B to exert a force on the solute in region A in the negative x direction. This simultaneously

brings about a decrease of the pressure of the solvent in region B. As a consequence, some

of the solvent in region B spreads out into region A, which constitutes the osmotic flow in

the present study. This is also why PA−
0 becomes larger than PB+

0 at the equilibrium state.

Figure 8 plots the time development of “instantaneous” osmotic pressure, PA+
1 , and “in-

stantaneous” pressure in region B, PB+
0 , where we have extended the present definitions of

pressure (originally defined in terms of the equilibrium state) to be a function of time by

introducing ensemble averages taken from many MD simulations. The increase of the osmotic

pressure begins with the decrease of pressure in region B. Note that these pressures first start

to change from their initial values around t ≈ 80, the time at which the first solute molecules

reach the membrane.

Although it may perhaps seem to be paradoxical from a fluid dynamics point of view that

solvent oozes through the membrane from the lower to higher pressure region, the osmotic

flow must be caused as a necessary consequence of the “increase of support of the solvent by

the membrane”, even for the ideal solution realized in the present study.

5. Summary

In summary, an ideal of osmotic equilibrium has been investigated using molecular dy-

namics. The osmotic flow has been numerically observed as the inflow of the solvent across a

membrane from the dilute to the concentrated side. By considering the balance between the

partial pressure of solute and solvents, it has been confirmed that van’t Hoff’s law is valid over

a relatively wide range of solute concentrations, and that the partial pressure of the solute
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is not uniform in the solution side. Based on the understanding of the non-uniformity of the

partial pressure, the mechanism of osmotic flow in the relaxation process as it approaches the

equilibrium state has been elaborated on, focusing in particular on the interaction between

solute and solvent.

The primary focus of the present study is not to realize a liquid with the precisely-

measurable thermodynamical properties at the macroscopic level, but rather to understand

the mechanism of solvent transport in a nanofluidic reservoir from the dynamical point of view.

To accomplish this aim, it is sufficient to construct a model using a relatively small number

of molecules, and to apply a small cutoff length. Future areas of work include the extension

of the present model to derive macroscopic results for more realistic, practical fluids.
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