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A Practical Algorithm for Computing the Roundness

Hiroyuki EBARAT, Noriyuki FUKUYAMATT, Hideo NAKANOfT

SUMMARY Roundness is one of the most important geo-
metric measures for circular objects in the process of mechanical
assembly . It is the amount of variation in a circular size which
can be permitted. To compute roundness, the authors have
already proposed an exact polynomial-time algorithm whose
time complexity is O(»?). In this paper, we show that this
roundness algorithm can be improved more efficiently, by
introducing the deletion of the unnecessary points, in practical
applications. In addition, the computational experience of this
revised algorithm is also presented.
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1. Introduction

In the process of mechanical assembly, the round-
ness® is one of the most important geometric measures
for objects with circular geometry (for example, ball
bearings, cylinders of engines, or rotary magnetic heads
of video tape recorders (see Fig. 1)). It is the geometric
tolerance for circular objects, that is, the amount of
variation in a circular size which can be permitted, and
is provided by ISO (International Organization for
Standardization) ®.

We define the roundness problem to determine the
roundness as follows: Given » points in the Euclidean
plane, find the center of the concentric circles enclosing

Fig. 1 The roundness.
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all given points between outer and inner circles and
minimizing the difference between radii of the outer
and inner circles. This definition is consistent with the
definition of the roundness by ISO, except that objects
are represented by a set of discrete points instead of a
closed curve, and it is well adapted to practical round-
ness measurements.

For this problem, we have proposed an exact
polynomial-time algorithm whose time complexity is
O (n*)®. This algorithm employs the technique of
taking the union of the nearest-point Voronoi dia-
gram 19 and the farthest-point Voronoi dia-
gram® (9 Recently, Le and Lee proposed new algo-
rithms for a different problem related to the round-
ness®. Moreover, other methods (for example, the least
squares method, the Min-Max method, or the Simplex
method) have been applied to compute the round-
ness® (2 These are, however, approximate algorithms
or exact but nonpolynomial time algorithms, with the
exception of ours and that of Le and Lee.

In this paper, we develop a practical fast algorithm
for the roundness problem, maintaining the exactness.
The concept of this algorithm is the deletion of the
unnecessary points. Our algorithm must be efficient, if
the input data are randomly distributed almost on a
circle as are practical data. Further, we confirm its
remarkable efficiency through the computational expe-
rience of practical roundness data.

2. Exact Roundness Algorithm

We have shown the following theorem in Ref. (2).

This theorem embodies the key concept of our previ-
ous roundness algorithm.
Theorem 1: The exact roundness can be computed in
polynomial time by examining all vertices in the union
of the nearest-point Voronoi diagram and the farthest-
point Voronoi diagram.

Moreover, we present an additional result in the
following proposition in this paper.

Proposition 1: There exists no center of the concen-
tric circles determining the exact roundness on the
Voronoi vertices in the nearest-point Voronoi diagram
and the farthest-point Voronoi diagram, except for the
case that the nearest-point (farthest-point) Voronoi
vertices are on Voronoi edges or Voronoi vertices in
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o the center of the concentric circles determining
the optimal roundness

Fig.2 The concentric circles determining the optimal
roundness.

the farthest-point (nearest-point) Voronoi diagram.
[Sketch of proof] We assume that the center of the
concentric circles determining the exact roundness is
on the Voronoi vertex, which is not on a Voronoi edge
or a Voronoi vertex in the other Voronoi diagram.
Thus, there exists the center of the concentric circles
determining the smaller roundness by moving the
center a minute distance in a certain direction. This is
a contradiction. [l
Based on this theorem and proposition, we propose
an exact algorithm— Algorithm 1—for the roundness
problem. Algorithm 1 is the same as the algorithm
found in Ref. (2) except that Algorithm 1 finds no
Voronoi vertices. Figure 2 shows the concentric circles
determining the exact roundness as constructed by
Algorithm 1.
[Algorithm 1]
step 1|  Construct the nearest-point Voronoi diagram.
step 2 Construct the farthest-point Voronoi diagram.
step 3 Find all intersecting points between the Vor-
onoi edges in the nearest-point Voronoi dia-
gram and the Voronoi edges in the farthest-
point Voronoi diagram.

step 4 Compute the difference of the distances from
these intersecting points to the nearest points
and the farthest points.

step 5 Find the point with the minimum difference

of the distances. The minimum difference of
the distances is the roundness, and this point
is the center of the concentric circles determin-
ing the roundness.

The time complexity of Algorithm 1 is O (n?), and
there exists an instance where Algorithm 1 takes O (#?)
time (see Fig. 3). This instance shows that the time
complexity of Algorithm 1 is tight. However, if we
were to implement this algorithm using the technique
of Ref. (1) or that of Ref. (7), we could reduce the
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Fig. 3 Instance where there are O (n®) intersecting points.

time complexity to O(nlog n+k), where k is the
number of intersecting points, and O (#n?) in the worst
case.

3. Practical Roundness Algorithm

In practical applications of the roundness algo-
rithm, a set of sampling points usually contains a
number of points which do not contribute to the
determination of the roundness. Therefore, if we can
delete the unnecessary points in advance, maintaining
the exactness, it is possible to reduce the computing
time of the roundness algorithm.

We assume that the practical data are successively
obtained in counterclockwise order, and the center of
the concentric circles determining the exact roundness
exists in the interior of the input data sequence. These
assumptions are suitable for practical roundness mea-
surements.

We will present two lemmas, two corollaries, and
two algorithms for deleting the unnecessary points.
The unnecessary points, those which do not contribute
to the determination of the roundness, are defined in
Corollary 1 and Corollary 2. First, we consider the
deletion of the unnecessary points in constructing the
inner circle from given points.

Lemma 1: Suppose the farthest pair for a set of n
given points. Let D be the distance of this farthest pair,
Or the center point of the farthest pair, Ry, the distance
from Of to the nearest point, Ry the distance from
Or to the farthest point, ¥=D/2, and d=R,.—r.
There exist no concentric circles determining the exact
roundness, such that the radius R’ of the inner circle is
less than Rin—d (see Fig. 4).

Proof: Let Ryt be the exact roundness.

Ropt§Rou1_Rin: (Rout_d) - (Rin*d)
—=r— (Rm*d)
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Fig. 4 [lllustration for the proof of Fact 1.

Consider concentric circles with a center S such
that the radius R;,” of the inner circle is less than
Rin—d. Let Ry be the radius of the outer circle. Since
r is less than or equal to the radius of the smallest

enclosing circle, Rou"> r. Therefore, since
Rin/<Rin*da
Ropt g r— (Rln' d) < Roull_ Rin,- m

Lemma 1 leads to the following corollary—Corol-
lary l—immediately.
Corollary 1: Suppose a circle formed by three points
taken successively in counterclockwise order which
form a left turn. If the radius of this circle is less than
Rin—d, then the second point is an unnecessary point.

Using Corollary 1 and reforming the technique of
Graham’s convex hull algorithm®, we construct an
algorithm—Algorithm 2—deleting the unnecessary
points for given points, in constructing the inner circle.
{Algorithm 2]

step |  Construct the convex hull, and find the far-
thest pair using the caliper method".

step 2 Find the center point Or of the farthest pair
and compute the distance D of the farthest
pair.

step 3  Compute Ry, and Rou.

step 4 Let R,=Rin— (Roui— D/2).

step 5 Arrange the given points into a circular dou-
bly linked list, with RLINK and LLINK
associated with a node pointer, respectively, to
the node on the counterclockwise side and the
node on the clockwise side.

step 6 Let wsragr be the nearest point from Or.

step 7 Start at v=wsarr, and repeat step 8 until
RLINK[V]: VSTART-

step 8 If three successive points from v form a left

turn and the radius of the circle formed by
these points is less than R,, then delete the
second point, and if v veragr let
v=LLINK[v] (the node on the clockwise
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Fig. 5 [lllustration for the proof of Fact 3.

side); otherwise, let v=RLINK|[v] (the node
on the counterclockwise side).

Next, we consider the deletion of the unnecessary
points in constructing the outer circle from given
points.

Lemma 2: Suppose the largest empty circle for a set
of n given points. Let Rj, be the radius of this circle,
and Ry the distance from the center O, of this circle
to the farthest point. There exist no concentric circles
determining the exact roundness, such that the radius
R’ of the outer circle is more than Ry (see Fig. 5).
Proof: Consider an empty circle constituting the
concentric circles with an enclosing circle of the radius
Rout” (> Rout) . Let Ry be the radius of this circle. Then
Rin= Riy’, because Ri, is the radius of the largest empty
circle. Since Rout < Rout,

Rout, - Rin, > Rout - Rin- D

Lemma 2 leads to the following corollary—Corol-

lary 2—immediately.
Corollary 2  Suppose a circle formed by three points
taken successively on the convex hull in counterclock-
wise order. If the radius of this circle is more than Royt,
then the second point is an unnecessary point.

Using Corollary 2 and reforming the technique of
Graham’s convex hull algorithm, we construct a simi-
lar algorithm—Algorithm 3—deleting the unnecessary
points for given points, in constructing the outer circle.
[Algorithm 3]

step 1  Arrange the given points on the convex hull
into a circular doubly linked list, with
RLINK and LLINK associated with a node
pointer, respectively, to the node on the
counter-clockwise side and the node on the
clockwise side.

step 2 Let wrarr be the farthest point from O, and
let R,y be this distance.

step 3 Start at v=rsrarr, and repeat step 4 until
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RLINK|[v]= v%ragr.

If the radius of the circle formed by three
successive points is more than Ry, then delete
the second point, and if v wrarr let v=
LLINK|[v] (the node on the clockwise side);
otherwise, let v=RLINK[v] (the node on the
counterclockwise side).

The worst-case time complexity of Graham’s con-
vex hull algorithm is O (»n log #). However, the time
complexity of both algorithms—Algorithm 2 and
Algorithm 3—is linear as the input data have been
sorted by polar angle.

Now, we can improve the exact roundness algo-
rithm by introducing the deletion of the unnecessary
points. We propose such an algorithm—Algorithm 4—
as a practical version of Algorithm I.

[Algorithm 4]

step 4

step 1 Delete the unnecessary points among the given
points by Algorithm 2 in constructing the
nearest-point Voronoi diagram.

step 2 Construct the nearest-point Voronoi diagram
for the rest of the given points.

step 3 Find the center O, of the largest empty circle
from the nearest-point Voronoi diagram.

step 4 Delete the unnecessary points among the given
points by Algorithm 3 in constructing the
farthest-point Voronoi diagram.

step 5 Construct the farthest-point Voronoi diagram
for the rest of the given points.

step 6 Compute the roundness by taking the union of

these Voronoi diagrams.

We are convinced that this algorithm can delete
many unnecessary points and run much faster than
Algorithm 1, taking into the consideration the fact that
the input data are distributed almost on a circle in
practical roundness measurements.

4. Computational Experience

In this section, we provide computational results
for practical roundness measurements.

The input data in this experience are all real data
sampled from cylinders with 3 ¢cm radii by roundness
measuring instruments, and the number of sampling
points is 1800. The input data are distributed almost
on a circle, and its roundness is about 10 zm. We use
a Unix workstation with coding in C language.

In Algorithm 1 and Algorithm 4, we adopt the
incremental algorithm of Ref. (4) to construct the
Voronoi diagrams and an exhaustive search to find
intersecting points.

Table 1 gives the number of points on the convex
hull and the numbers of points after deleting the
unnecessary points. Table 2 presents a comparison of
the computational time between Algorithm 1 and
Algorithm 4.

The computational results show that the revised
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Table 1 The number of points on the convex hull and the
numbers of points after deleting the unnecessary
points.

data # of points # of points after deletion ‘
No. on the convex hull | Algorithm 2 Algorithm 3J

1 1273 107 5

2 1297 114 12

3 1273 102 7

4 1254 111 13

S 1233 22 4

6 1201 112 7

7 1170 33 3

8 1630 9 4

average 1291 76.3 6.9

Table 2 A comparison ol the computational time between
Algorithm | and Algorithm 4.

data computational time ( sec. )

No. Algorithm 1 Algorithm 4
1 116.2 6.26
2 142.3 7.00
3 156.5 6.41
4 138.4 6.71
5 159.1 4.86
6 177.9 9.39
7 141.3 7.06
8 165.5 7.89
average 149.7 6.95

roundness algorithm reduces the necessary points in
constructing the nearest-point Voronoi diagram in
about 1/20 the time of the original one and in con-
structing the farthest-point Voronoi diagram in about
1/200 the time. Furthermore, the overall
computational process for computing the roundness
proceeds more than 20 times as fast. Since the bound-
aries for the deletion in constructing the nearest-point
Voronoi diagram are worse, being computed from the
farthest pair, the deleting points in constructing the
nearest-point Voronoi diagram are fewer.

5. Conclusions

We proposed a practical, fast roundness algorithm
by introducing the deletion of the unnecessary points,
maintaining the exactness. In addition, we made sure
of its remarkable efficiency by employing practical
roundness data. It is also clear that our technique of
deleting the unnecessary points can be applied to the
roundness algorithms which have typically been used
in practical roundness measurements.

We can estimate the number of the deleted points
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by our algorithm experimentally; however, we cannot
estimate them theoretically. The theoretical estimation
of the number of deleted points is a problem requiring
further study.
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