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Abstract. Diffusion and convection of solute suspended in a fluid across porous

membranes are known to be reduced compared in bulk solution, due to the fluid

mechanical interaction between the solute and the pore wall as well as steric restriction.

If the solute and the pore wall are electrically charged, the electrostatic interaction

between them could affect the hindrance to diffusion and convection. In the present

study, the transport of charged spherical solutes through charged circular cylindrical

pores filled with an electrolyte solution containing small ions was studied numerically,

by using a fluid mechanical and electrostatic model. Based on a mean field theory, the

electrostatic interaction energy between the solute and the pore wall was estimated

from the Poisson-Boltzmann equation, and the charge effect on the solute transport

was examined for the solute and pore wall of like charge. The results were compared

with those obtained from the linearized form of the Poisson-Boltzmann equation, i.e.

the Debye-Hückel equation.
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1. Introduction

Material transport across porous membranes is encountered in a wide variety of

biological and engineering fields. In such transport phenomena, charge of porous

membranes or solutes frequently plays an important role in regulating the material

exchange. For example, it was shown that for similar size globular proteins, ribonuclease

and α-lactalbumin, the permeability of mesenteric microvessels to positively charged

ribonuclease was twice that to negatively charged α-lactalbumin (Adamson et al. 1988).

Together with experimental studies, theoretical analyses have been also performed for

long time about the electrostatic interaction between charged solute and pore wall and

its effect on transport phenomena (Curry 1984, Probstein 2003, Truskey et al. 2004).

Smith & Deen (1980, 1983) developed a model of electrostatic double-layer

interaction between a spherical solute and a circular cylindrical pore to estimate

equilibrium partitioning of solutes between pore and bulk solution, when the solute and

pore wall are charged. Based on a continuum, point-charge description of the double

layer, the electric field around a solute in an electrolyte solution can be described by the

so-called Poisson-Boltzmann (PB) equation. They simplified the problem by adopting a

linearized form of the PB equation, i.e. the Debye-Hückel (DH) equation to calculate the

electrical potential. Evidently from the derivation, this approximation is appropriate

under the condition of |Fψ/RT | ≪ 1 (see equations (20) and (21)), where ψ is the

electrical potential, F is the Faraday constant, R is the gas constant, and T is the

absolute temperature. For the same configuration with Smith & Deen (1980, 1983), i.e.,

a charged spherical solute in a charged circular cylindrical pore, a recent study of Bhalla

& Deen (2009) reported that the values of the Boltzmann factor exp (−E/kT ), which is

a main factor determining the solute partitioning as well as the diffusion and convection

of solutes, are nearly identical, irrespective of whether they are derived from the PB

equation or from the DH equation, even for maximum values of |Fψ/RT | exceeding

unity, where k is the Boltzmann constant and E is the interaction energy between the

solute and the pore including steric and electrostatic interactions. Thus, they concluded

that the DH equation provides sufficiently accurate results for the interaction energy E

in calculating transport coefficients such as the osmotic reflection coefficient.

In a previous study, we used the DH equation to analyze the transport of a charged

spherical solute across porous membranes with charged circular cylindrical pores filled

with an electrolyte solution (O-tani et al. 2011). Assuming that the radius of the pore

and that of the solute molecule greatly exceed that of the solvent, we carried out fluid

mechanical analyses to calculate the flow field around a solute in the pore to estimate the

drag coefficients on the solute. We computed the electrical potential around the solute

in the electrolyte solution based on a mean field theory to provide the interaction energy

between the solute and pore of like charge. Combining the results of the fluid mechanical

and electrostatic analyses, we estimated the rate of the diffusive and convective transport

of solute across the pore (O-tani et al. 2011). However, our recent preliminary study

suggested that the values of the Boltzmann factor estimated from the nonlinear PB and
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Figure 1. Sketch of the solute transport across a membrane with circular cylindrical

pores of radius rc and length L. Spherical solutes of radius a are suspended in an

electrolyte solution containing small cations and anions. The surfaces of the pore

wall and solutes are electrically charged with densities qc and qs, respectively. The

membrane is placed between two solutions of solute concentration c0∞ and cL∞. The

ion concentrations are the same on both sides of the membrane.

linear DH formulations are not always comparable, and the difference between them

may become rather significant, especially in the cases of large charge densities and/or

low ion concentrations (Akinaga & Sugihara-Seki 2011).

In the present study, therefore, we recalculate the electrical potential based on the

PB equation, instead of the DH equation, for a charged spherical solute in a charged

cylindrical pore, and compare the Boltzmann factor obtained from the PB equation and

from the DH equation. The effect of solute and pore charge on the rate of the diffusive

and convective transport of solute across cylindrical pores is examined in the framework

of a nonlinear formulation.

2. Formulation and methods

The model to describe the solute transport across porous membranes is the same with

O-tani et al. (2011). Briefly, we consider diffusive and convective transport of spherical

solute of radius a across a porous membrane with circular cylindrical pores of radius

rc and length L (rc ≪ L), as shown in figure 1. The membrane is placed between two

solutions differing in solute concentration, c0∞ and cL∞ (c0∞ > cL∞). The radii of the

solute and the pore are assumed to be much larger than that of the solvent molecules, so

that the solute is treated as a particle and the solvent as a continuum. The solute and

the pore wall have uniform constant surface charge of density qs and qc, respectively, and

the solvent is an electrolyte solution containing small cations and anions. The ions are

so small compared to the solute or the pore that a point-charge description of the electric

double layer is employed, and the electrolyte solution is regarded as a Newtonian fluid

with viscosity µ. For simplicity, we restrict the analysis to the cases of dilute solutions,

solute and pore surfaces of like charge, and univalent-univalent electrolytes. The bulk



4

electrolyte concentrations on both sides of the membrane are assumed to be equal, say

C0.

Taking the x-axis along the centerline of the pore, we assume mechanical and

thermal equilibrium in the x-direction such that the fluid mechanical force exerted on

a solute is balanced with the gradient of the chemical potential of the solute. This

condition yields for a solute translating with velocity U in the x-direction, immersed in

a mean flow V ,

kT
1

c

∂c

∂x
= −6πµa (−UFt + V F0) (1)

where c is the solute concentration, Ft and F0 represent the drag coefficients defined as

Ft = −F/6πµaU and F0 = F ′/6πµaV , where F is the hydrodynamic force exerted on

the solute translating parallel to the pore axis at velocity U in an otherwise quiescent

fluid, and F ′ is the force exerted on a stationary solute immersed in a Poiseuille flow

through the pore with mean velocity V . In equation (1), the force due to solute rotation

is not included, since its effect was found to be small (Sugihara-Seki 2004). We further

assume an equilibrium distribution of solutes in the radial direction so that the solute

concentration c is expressed as

c = c0 (x) exp

[

−
E (β)−E (0)

kT

]

, (2)

where c0(x) represents the solute concentration on the x-axis and E(β) represents the

solute potential when the solute center is placed at non-dimensional radial position β

relative to the pore radius. Then, equation (1) leads to the expression for the axial

component of the solute flux:

〈N〉 = −KdD∞

d 〈c〉

dx
+KcV 〈c〉 (3)

where N (= cU) is the solute flux, the angle brackets indicate average over the pore

cross-section, D∞ = kT/ (6πµa) represents the diffusivity in an unbounded solution,

and Kd and Kc are local hindrance factors for diffusion and convection, respectively,

which are given by

Kd =

∫ 1−a/rc
0

(Ft (β))
−1 exp [−E (β) /kT ]β dβ

∫ 1−a/rc
0

exp [−E (β) /kT ]β dβ
, (4)

Kc =

∫ 1−a/rc
0

F0 (β) (Ft (β))
−1 exp [−E (β) /kT ] β dβ

∫ 1−a/rc
0

exp [−E (β) /kT ]β dβ
. (5)

Equation (3) can be solved to obtain

〈N〉 = KcV
〈c〉

0
− 〈c〉

L
e−Pe

1− e−Pe
, (6)

where the Peclet number is defined in terms of the pore length such as

Pe =
KcV L

KdD∞

. (7)
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Here, 〈c〉
0
and 〈c〉

L
are the averaged solute concentration at the pore entrance and exit,

respectively. These quantities are related to the bulk concentrations by

〈c〉
0
= c0∞Φ, (8)

〈c〉
L
= cL∞Φ, (9)

Φ = 2

∫ 1−a/rc

0

exp [−E (β) /kT ]β dβ. (10)

The quantity Φ defined by equation (10) is termed solute partitioning coefficient, which

represents the partitioning of solute between pores and bulk solution. Substitution of

equations (8) and (9) into equation (6) yields

〈N〉 = ΦKcV c0∞
1− (cL∞/c0∞) e−Pe

1− e−Pe
. (11)

If we define

H = ΦKd, (12)

W = ΦKc, (13)

then equations (7) and (11) are rewritten as

Pe =
WV L

HD∞

, (14)

〈N〉 = WV c0∞
1− (cL∞/c0∞) e−Pe

1− e−Pe
. (15)

The limiting forms of equation (15) are

〈N〉 =
HD∞

L
(c0∞ − cL∞) for Pe≪ 1, (16)

〈N〉 = WV c0∞ for Pe≫ 1. (17)

Note that equations (16) and (17) represent the diffusive and convective transport,

respectively, and H and W equal unity in the case of a/rc ≪ 1 or in bulk phase.

Thus, the values of H and W represent the rate of the diffusion and convection of the

solute through the pore relative to the bulk phase, respectively, and are called hindrance

factors.

In O-tani et al. (2011), we focused on charge effect on H and W . In the present

study, we also calculate Φ as functions of the size ratio a/rc, the charge densities qs,

qc, and the ion concentration C0. In evaluating these values from equations (10), (4),

(5), (12) and (13), there are two steps before performing integrations appeared in these

equations: (i) estimate of the drag coefficients Ft and F0, and (ii) estimate of the

interaction energy E. These procedures are the same with O-tani et al. (2011), except

the use of the PB equation instead of the DH equation in step (ii).

In step (i), the Stokes equations together with the continuity equation were solved

numerically to calculate the flow field around a solute placed in a pore, by employing

a hp-finite element method (O-tani et al. 2011). From the velocity fields obtained

for a solute translating in the x-direction in an otherwise quiescent fluid and for a

stationary solute immersed in a Poiseuille flow, we computed the drag coefficients Ft
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Table 1. Error estimation. rc = 10 nm, qc = qs = −0.02 C/m2.

order n a/rc τ ΦDH−N ΦPB−N

∆ΦDH−N

Φ∗

DH−N

∆ΦPB−N

Φ∗

PB−N

6 0.2 3.32 4.629×10−4 1.009×10−2 7.714×10−4 5.405×10−2

7 0.2 3.32 4.626×10−4 9.714×10−3 1.394×10−4 1.474×10−2

8 0.2 3.32 4.625×10−4 9.607×10−3 3.947×10−5 3.553×10−3

9∗ 0.2 3.32 4.625×10−4 9.573×10−3 – –

6 0.2 6.63 1.960×10−1 2.586×10−1 1.976×10−2 1.290×10−1

7 0.2 6.63 1.924×10−1 2.375×10−1 1.335×10−3 3.686×10−2

8 0.2 6.63 1.923×10−1 2.312×10−1 5.747×10−4 9.491×10−3

9∗ 0.2 6.63 1.922×10−1 2.291×10−1 – –

6 0.2 12.84 5.707×10−1 5.928×10−1 1.823×10−1 1.853×10−1

7 0.2 12.84 5.143×10−1 5.437×10−1 6.553×10−2 8.712×10−2

8 0.2 12.84 4.912×10−1 5.155×10−1 1.780×10−2 3.070×10−2

9∗ 0.2 12.84 4.827×10−1 5.001×10−1 – –

6 0.6 3.32 2.690×10−49 9.584×10−21 4.733×10−6 1.072×10−3

7 0.6 3.32 2.690×10−49 9.576×10−21 2.254×10−8 1.891×10−4

8 0.6 3.32 2.690×10−49 9.574×10−21 3.544×10−8 3.003×10−5

9∗ 0.6 3.32 2.690×10−49 9.574×10−21 – –

6 0.6 6.63 3.992×10−7 8.427×10−6 7.642×10−5 2.610×10−3

7 0.6 6.63 3.991×10−7 8.409×10−6 3.875×10−6 4.972×10−4

8 0.6 6.63 3.991×10−7 8.405×10−6 4.031×10−7 8.433×10−5

9∗ 0.6 6.63 3.991×10−7 8.405×10−6 – –

6 0.6 12.84 2.882×10−2 3.217×10−2 8.172×10−3 2.083×10−2

7 0.6 12.84 2.861×10−2 3.166×10−2 7.548×10−4 4.720×10−3

8 0.6 12.84 2.859×10−2 3.154×10−2 1.054×10−4 1.005×10−3

9∗ 0.6 12.84 2.858×10−2 3.151×10−2 – –

and F0 as functions of the radial position of the solute center β and the size ratio a/rc.

As noted in O-tani et al. (2011), although our estimates of the drag coefficients suggested

considerable difference from existing studies, depending on the radial position and the

size ratio, this difference was found to have a minor effect on the hindrance factors. In

the present study, we adopt the values of Ft and F0 from O-tani et al. (2011).

In step (ii), the Gauss’s law is expressed in terms of the electrical potential ψ and

the concentrations of monovalent cation and anion C+ and C− as

∇2ψ = −
F

ε
(C+ − C−) , (18)

where ε is the solvent dielectric permittivity. Assuming the Boltzmann distribution of

ions such as

C± = C0 exp (∓Fψ/FT ) , (19)
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we obtain the PB equation

∇2ψ =
2FC0

ε
sinh (Fψ/RT ) . (20)

If |Fψ/FT |≪1, then equation (20) can be reduced to the so-called Debye-Hückel

equation:

∇2ψ =
1

λ2D
ψ, (21)

where λD = [εRT/2F 2C0]
1/2

is the Debye length, defined for a univalent-univalent

electrolyte.

Equation (20) was solved numerically by a spectral element method, subject to

the boundary condition corresponding to the prescribed surface charge densities. The

method of numerical computations and error assessments are described in Akinaga

et al. (2008).

Similarly to our previous error estimation for the potential energy (Akinaga

et al. (2008)), we examined how the obtained values of the partition coefficient vary

with changing the truncation order n of the interpolation functions in the spectral

element method. The 6th and 7th columns in Table 1 show the relative errors of the

partition coefficient compared to the value of n = 9 at qs = qc = −0.02 C/m2. It is seen

from Table 1 that the relative error decreases with increasing the truncation order n for

constant a/rc and τ . Table 1 shows that the relative error of the partition coefficient at

n = 8 is at most about 3 percent in the case of high charge density. In the case of low

charge density (qs = qc = −0.005 C/m2), the relative errors are much smaller than the

corresponding values shown in Table 1. Thus, we adopted n = 8 in the current study.

The detailed procedures in steps (i) and (ii) are described in O-tani et al. (2011).

In the following section, we shall make a comparison to the results obtained from the

PB equation (equation (20)) and from the DH equation (equation (21)). We denote the

former as PB-N and the latter as DH-N. As may be evident from equations (10), (4) and

(5), the Boltzmann exponential factor exp [−E (β) /kT ] plays a key role in determining

the values of Φ, H and W . The Boltzmann factor reflects the relative probability

of finding a solute at a given radial position β in the pore. Thus, beginning with the

Boltzmann factor, we consider the solute partitioning coefficient Φ, the hindrance factors

H and W .

Smith & Deen (1980, 1983) solved the DH equation by an analytical method

combining general solutions expressed in cylindrical and spherical coordinates to

calculate the partitioning coefficient. They approximated their analytical solution

by truncating series expansions. The details of their method were elaborated in

Smith (1981) and summarized in the appendix of Bhalla & Deen (2009). By adopting

their method, we also calculated the approximate solution of the DH equation, and

denote the results as DH-A.
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Figure 2. (a) The contours of electrical potential in a longitudinal section of the pore

containing the centerline of the pore and the center of a solute, (b) the contours of

electrical potential in the cross-section of the pore containing the solute center, and

(c) profiles of the electrical potential along the dotted line in figures 2(a) and (b). The

parameter values are rc = 10 nm, a = 4 nm, qs = qc = −0.01 C/m2, C0 = 0.01 M,

and the solute center is placed at β = 0.5. The solid lines represent the results of

PB-N, and the dashed lines represent the results of DH-N. The thin and thick lines

in figure 2(c) are the corresponding profiles for qs = qc = −0.005 and −0.02 C/m2,

respectively, with the other parameters unchanged. In figures (a) and (b), the interval

between neighboring contours is F∆ψ/RT = 0.2.
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Figure 3. Boltzmann factor exp[−E(β)/kT ] as a function of the relative radial

position of the solute center for rc = 10 nm, a = 4 nm, at (a) qs = qc = −0.005

C/m2 and at (b) qs = qc = −0.02 C/m2. The ion concentrations are C0 = 0.01 M

(open circles), 0.02 M (squares), 0.04 M (triangles), 0.1 M (diamonds), and 0.15 M

(closed circles), corresponding to τ = 3.32, 4.69, 6.63, 10.49 and 12.84, respectively,

for aqueous solutions at T = 310 K. The solid lines represent the results of PB-N, the

dashed lines represent the results of DH-N, and the dotted lines represent the results

of DH-A.
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Figure 4. Ratios of the Boltzmann factors obtained from the DH equation and

the corresponding values obtained from the PB equation, exp[−E(β)/kT ]DH−N /

exp[−E(β)/kT ]PB−N (dashed lines) and exp[−E(β)/kT ]DH−A / exp[−E(β)/kT ]PB−N

(dotted lines), for rc = 10 nm, a = 4 nm, at (a) qs = qc = −0.005 C/m2 and at

(b) qs = qc = −0.02 C/m2. The ion concentrations are C0 = 0.01 M (open circles),

0.02 M (squares), 0.04 M (triangles), 0.1 M (diamonds), and 0.15 M (closed circles),

corresponding to τ = 3.32, 4.69, 6.63, 10.49 and 12.84, respectively, for aqueous

solutions at T = 310 K.
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3. Results

Figures 2(a) and 2(b) show the contours of the electrical potential for rc = 10 nm,

a = 4 nm, qs = qc = −0.01 C/m2 and C0 = 0.01 M, with the solute center placed at

β = 0.5 from the pore centerline. Profiles of the electrical potential along the dotted

line in figures 2(a) and (b) are plotted in figure 2(c). The corresponding profiles for

qs = qc = −0.005 C/m2 and qs = qc = −0.02 C/m2 with the other parameter unchanged

are also plotted by thin lines and thick lines, respectively, in figure 2(c). In each figure,

the solid lines represent the results of PB-N, and the dashed lines represent the results

of DH-N. A strong interaction of the electric double layer formed around the solute and

that near the pore wall is seen in figures 2(a) and 2(b). Figures 2(a)-(c) indicate that the

magnitudes of the electrical potential obtained from the DH equation are larger than

the corresponding values from the PB equation, and the differences between them are

significant in the gap region between the solute and the pore wall. Figure 2(c) shows

that this difference becomes larger as the magnitude of the charge density is increased.

It can be also shown that the difference is increased with decreasing ion concentration

C0 (not shown).

The Boltzmann factor exp[−E(β)/kT ] is plotted as a function of the radial position

of the solute center for rc = 10 nm, a = 4 nm and C0 = 0.01, 0.02, 0.04, 0.10 and 0.15

M, at qs = qc = −0.005 C/m2 in figure 3(a) and at qs = qc = −0.02 C/m2 in figure 3(b).

If we define a non-dimensional parameter τ = rc/λD, the cases of C0 = 0.01, 0.02, 0.04,

0.10 and 0.15 M correspond to τ = 3.32, 4.69, 6.63, 10.49 and 12.84, respectively, for

aqueous solutions at T = 310 K. In figures 3(a) and (b), the solid lines represent the

results of PB-N, the dashed lines represent the results of DH-N, and the dotted lines

represent the results of DH-A. Figures 3(a) and (b) show a decrease in Boltzmann factor

as the radial position β is increased from 0 to 1−a/rc (= 0.6) for given τ or τ is deceased

for given β. The former trend indicates that the solute is more likely to be placed closer

to the pore centerline, due to the electrostatic repulsive interaction between the solute

and pore charge. The latter trend is because a decrease in τ or an increase in Debye

length strengthens the electrostatic interaction, which results in stronger exclusion of

solutes from the pore.

It is seen from figures 3(a) and (b) that the results of DH-A and DH-

N, exp[−E(β)/kT ]DH−A and exp[−E(β)/kT ]DH−N, show a good agreement except

for the solute placed close to the pore wall, i.e. β ∼ 1 − a/rc, and the

values of exp [−E (β) /kT ]
DH−A

are always larger than the corresponding values of

exp [−E (β) /kT ]
DH−N

. As β is increased up to 1− a/rc (= 0.6), the difference between

them is more evident in figure 3(a). Although this discrepancy near β ∼ 1 − a/rc is

invisible in figure 3(b), there is a large relative difference between them in this case as

well, which will be seen in figure 4.

In order to show the difference of the Boltzmann factors obtained from the

PB equation, exp [−E (β) /kT ]
PB−N

, and the corresponding values obtained from

the DH equation, exp[−E(β)/kT ]DH−N and exp [−E (β) /kT ]
DH−A

, we plotted the
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ratios of exp [−E (β) /kT ]
DH−N

/ exp [−E (β) /kT ]
PB−N

and exp [−E (β) /kT ]
DH−A

/

exp [−E (β) /kT ]
PB−N

in figure 4, for rc = 10 nm, a = 4 nm and τ = 3.32, 4.69, 6.63,

10.49 and 12.84 at qs = qc = −0.005 and −0.02 C/m2. Figures 4(a) and (b) show that

the ratio of exp [−E (β) /kT ]
DH−N

/ exp [−E (β) /kT ]
PB−N

is always smaller than unity,

reflecting the fact that the interaction energy E(β) is overestimated based on the DH

equation. It is also seen that the ratio of exp [−E (β) /kT ]
DH−N

/ exp [−E (β) /kT ]
PB−N

decreases monotonically with increasing β from 0 to 1−a/rc or with decreasing τ . This

may be understood from figure 2, which shows large difference in electrical potentials of

PB-N and DH-N in the gap region between the solute and the pore wall. This difference

is more enhanced for larger β and smaller τ .

In the case of low charge density (qs = qc = −0.005 C/m2), figure 4(a) shows that

the ratio of exp [−E (β) /kT ]
DH−N

/ exp [−E (β) /kT ]
PB−N

remains close to unity for

large τ ( ≥ 4.69 ) over almost the whole range of β except for β ∼ 1 − a/rc, while in

the case of high charge density (qs = qc = −0.02 C/m2), figure 4(b) shows that the

ratio is much smaller than unity for small τ (≤ 6.63) even for the solute placed near

the pore centerline. It is interesting to note that the ratio of exp[−E(β)/kT ]DH−N /

exp[−E(β)/kT ]PB−N is as low as about 0.05 for τ = 4.69 and it is nearly 0 for τ= 3.32

in figure 4(b), whereas the Boltzmann factors themselves are visually indistinguishable

in both cases, given the linear scale in figure 3(b). This is because the interaction

energy E(β)/kT is so large in those cases that the Boltzmann factor exp[−E(β)/kT ] is

extremely small.

With regard to DH-A, figure 4(a) shows that an increase in β increases the

ratio of exp[−E(β)/kT ]DH−A / exp[−E(β)/kT ]PB−N beyond unity, and the ratio rises

rapidly with β approaching (1 − a/rc). The rapid rise of exp[−E(β)/kT ]DH−A /

exp[−E(β)/kT ]PB−N near β ∼ (1 − a/rc) is also seen in figure 4(b), indicating that

the DH-A underestimates the interaction energy for large β.

Multiplying the Boltzmann factor by β and integrating it over the pore cross-

section yields the solute partitioning coefficient Φ (equation (10)). As evident from

equations (8) and (9), the quantity Φ represents the ratio of the solute concentration

at the pore ends relative to the bulk solution. Figure 5 shows Φ as a function of τ ,

for rc = 10 nm, a = 2, 4, 6 nm, qs = qc = −0.005 and −0.02 C/m2. For small

τ , electrostatic effects are so large that solutes are excluded from the pores, while for

large τ , electrostatic effects are unimportant. Thus, each curve increases monotonically

with increasing τ and approaches an asymptotic limit corresponding to purely steric

exclusion, (1− a/rc)
2. This limiting value can be easily obtained from equation (10) for

E(β) = 0 at 0 ≤ β ≤ (1− a/rc).

In general, the difference of Φ values between linear and nonlinear formulations

is large for small τ , while it is small for large τ . In the case of low charge density

(qs = qc = −0.005 C/m2), open symbols in figures 5(a) and (b) show that the ΦDH−N

values are comparable to those of ΦPB−N and the difference between them becomes

noticeable only for small τ . In contrast, the difference between the ΦDH−A values and

the ΦPB−N values is evident at low charge density, resulting from that the Boltzmann
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Figure 5. (a) Partitioning coefficients ΦPB−N (solid lines), ΦDH−N (dashed lines)

and ΦDH−A (dotted lines) for rc = 10 nm, qs = qc = −0.005, −0.02 C/m2, and (b)

ratios of partitioning coefficients obtained from the DH equation and the corresponding

values obtained from the PB equation, ΦDH−N / ΦPB−N (dashed lines) and ΦDH−A /

ΦPB−N (dotted lines). The size ratios are a/rc = 0.2 (circles), 0.4 (squares), and 0.6

(triangles). Open symbols represent the case of qs = qc = −0.005 C/m2 and closed

symbols represent the case of qs = qc = −0.02 C/m2.

factors of DH-A are larger than those of PB-N or DH-N for the solute placed near the

pore wall (β ∼ 1 − a/rc), as shown in figures 3(a) and 4(a). Figure 5(b) shows that,

as τ is increased for given a/rc, the ratio ΦDH−A / ΦPB−N increases from below unity

and reaches a maximum at a certain β, beyond which the ratio decreases to approach

unity. This behavior is different from the monotonic increase in ΦDH−N / ΦPB−N with

increasing τ . At large charge density (qs = qc = −0.02 C/m2), closed symbols in figure

5(b) show that an increase in τ increases both ratios of ΦDH−N / ΦPB−N and ΦDH−A /

ΦPB−N monotonically from nearly zero to unity.

By using equations (12) and (13), the hindrance factors H and W were computed,

and the obtained results of H and W are plotted in figures 6 and 7 as functions of τ , for

rc = 10 nm, a = 2, 4, 6 nm, and qs = qc = −0.005 and −0.02 C/m2. In the calculation,

we adopted the values of Ft and F0 of O-tani et al. (2011). Similarly to the behavior of

the partitioning coefficient shown in figure 5, the hindrance factors H and W increase

with increasing τ for given a/rc or decreasing charge densities qs, qc for given τ . Their

differences between linear and nonlinear formulations also show similar dependence on τ

and charge densities qs, qc with the partitioning coefficient Φ. In short, the DH-N values

of H andW provide good approximation to the PB-N values at low charge densities and

large τ , and an increase in charge densities or a decrease in τ makes the DH-N values

smaller compared to the PB-N values. On the other hand, the DH-A values of H andW

are higher than the PB-N values at low charge density (qs = qc = −0.005 C/m2) except
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Figure 6. (a) Hindrance factors HPB−N (solid lines), HDH−N (dashed lines) and

HDH−A (dotted lines) for rc = 10 nm, qs = qc = −0.005, −0.02 C/m2, and (b)

ratios of hindrance factors obtained from the DH equation and the corresponding

values obtained from the PB equation, HDH−N / HPB−N (dashed lines) and HDH−A /

HPB−N (dotted lines). The size ratios are a/rc = 0.2 (circles), 0.4 (squares), and 0.6

(triangles). Open symbols represent the case of qs = qc = −0.005 C/m2 and closed

symbols represent the case of qs = qc = −0.02 C/m2.
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Figure 7. (a) Hindrance factors WPB−N (solid lines), WDH−N (dashed lines) and

WDH−A (dotted lines) for rc = 10 nm, qs = qc = −0.005, −0.02 C/m2, and (b)

ratios of hindrance factors obtained from the DH equation and the corresponding

values obtained from the PB equation, WDH−N / WPB−N (dashed lines) and WDH−A

/ WPB−N (dotted lines). The size ratios are a/rc = 0.2 (circles), 0.4 (squares), and 0.6

(triangles). Open symbols represent the case of qs = qc = −0.005 C/m2 and closed

symbols represent the case of qs = qc = −0.02 C/m2.
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Figure 8. The relative difference of the partition coefficient ∆Φ/ΦPB−N, where ∆Φ

represents either |ΦPB−N −ΦDH−A| (dotted lines) or |ΦPB−N −ΦDH−N| (dashed lines)

at qs = qc = −0.005 C/m2 (thin lines) or qs = qc = −0.02 C/m2 (thick lines). Lines

show contours of the relative difference and region below and to the right of each line

corresponds to the values of a/rc and τ at which the relative difference is smaller than

the number specified on the line.

for small τ , and lower than the PB-N values at high charge density (qs = qc = −0.02

C/m2).

4. Discussion

For the same configuration with the present study, i.e. a charged spherical solute

suspended in an electrolyte solution within a charged circular cylindrical pore, there are

pioneering works by Smith & Deen (1980, 1983), which presented analytical expressions

for the interaction energy E based on the DH equation. By truncating the series

expansion for the interaction energy, Deen and his coworkers calculated approximately

the solute partitioning coefficient Φ, the hindrance factors H , W as well as the osmotic

reflection coefficient (Smith & Deen 1980, Smith & Deen 1983, Deen 1987, Bhalla

& Deen 2009, Dechadilok & Deen 2006, Dechadilok & Deen 2009). In a previous

study, we adopted the PB equation to estimate the interaction energy and the osmotic

reflection coefficient (Akinaga et al. 2008). In a following study, we employed the DH

equation to estimate the hindrance factors H and W by a numerical computation O-

tani et al. (2011), since the linear DH equation is much easier to solve compared to the

nonlinear PB equation.

With regard to the difference between the linear DH and nonlinear PB formulations,
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Bhalla & Deen (2009) pointed out that the interaction energy E(β) can be computed

with sufficient accuracy using the DH equation, high charge densities notwithstanding.

In contrast, our recent preliminary study suggested that there may be a noticeable

difference of the interaction energy in the nonlinear PB and linear DH formulations

(Akinaga & Sugihara-Seki 2011). This was the motivation of the present study.

As apparent from figure 4, the present study showed that the ratio of the Boltzmann

factors obtained from the PB and DH equations is not always near unity, indicating that

the PB and DH Boltzmann factors are not necessarily comparable, especially in the cases

of large charge densities and low ion concentrations. This result is in contrast to that of

Bhalla & Deen (2009), despite the fact that their parameter ranges are similar to ours.

Their comparison of Boltzmann factors obtained from the PB equation and from the

DH equation (figure 1 of Bhalla & Deen (2009)) was made only for the solute placed

on the pore centerline (β = 0). This may be one of the causes for the discrepancy

between the present result and Bhalla & Deen (2009), since the DH equation gives

rather better approximation for the solute on the pore centerline compared to off-axis

positions, as shown in figures 3 and 4. Another possible cause may be related to the

tendency that the larger the interaction energy is, the smaller the Boltzmann factor is.

As representatively shown by open circle and rectangle symbols in figures 3(b) and 4(b),

the cases of strong electrostatic interaction with large interaction energy tend to exhibit

large relative differences between the PB and DH Boltzmann factors (see figure 4(b)),

while the Boltzmann factors themselves are visually indistinguishable in these cases (see

figure 3(b)). Thus, the difference between the PB and DH Boltzmann factors may be

hardly seen in a linear scale as in figure 3 in the present study or in figure 1 of Bhalla

& Deen (2009).

Using the DH equation, O-tani et al. (2011) concluded that even at rather large

ion concentrations, the repulsive electrostatic interaction between the solute and pore

wall of like charge could significantly reduce both of diffusive and convective transport

rates of the solute. Although this conclusion is qualitatively unaltered, the present

study suggests that much attention is needed for quantitative estimate of the transport

coefficients based on the DH equation, particularly when the charge densities are large

or the ion concentration is low or the solute size is large. Figures 5(b), 6(b) and 7(b)

indicate that in the case of high charge density (qs = qc = −0.02 C/m2), the Φ, H , W

values obtained from the DH equation are less than a half of those obtained from the

PB equation at τ . 4.5 for a/rc = 0.2, τ . 6 for a/rc = 0.4 and τ . 9 for a/rc = 0.6.

In the case of low charge density (qs = qc = −0.005 C/m2), on the other hand, the Φ,

H , W values obtained from the DH equation and from the PB equation coincide with

each other within 20 % errors at τ & 4.5 for a/rc = 0.6 and τ & 3 for a/rc = 0.4. For

a/rc = 0.2 and qs = qc = −0.005 C/m2, the differences are within 7 % for all τ values

examined in the present study.

In order to delineate the difference more clearly, we plotted in figure 8 the relative

difference of the partition coefficient ∆Φ/ΦPB−N in the parameter space of (a/rc, τ),

where ∆Φ represents either |ΦPB−N −ΦDH−A| or |ΦPB−N −ΦDH−N| at qs = qc = −0.005
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C/m2 or −0.02 C/m2. Lines in figure 8 show contours of the relative difference. Since, in

general, the relative difference decreases for smaller a/rc and larger τ at constant charge

densities, region below and to the right of each line corresponds to the parameter values

at which the relative difference is smaller than the number specified on the line. Thus,

displacing a contour line to the left indicates an improvement of the accuracy in this

figure. In the case of low charge density (qs = qc = −0.005 C/m2), the line of 1 %

difference for DH-N is placed on the left-hand side relative to the line for DH-A to a

considerable extent, indicating that DH-N provides better results compared to DH-A.

In the case of high charge density (qs = qc = −0.02 C/m2), on the other hand, the

relative difference is generally large for both of DH-N and DH-A. The relative difference

is about 10 % along lines running through (a/rc, τ) ∼ (0.2, 8), (0.4, 10) and (0.6, 12).

It may be interesting to note that the approximate analytical results of Φ, H or W

denoted by DH-A sometimes provide better approximation than those of DH-N. This

can be explained from the trend that the interaction energy of DH-A is smaller, i.e.

the Boltzmann factor is larger, than that of PB-N or DH-N at large β, as shown in

figure 3(a), which may compensate the overestimate of the interaction energy of the DH

equation.

5. Conclusion

By using an electrostatic model for the solute transport across a membrane with circular

cylindrical pores, we examined the effect of the solute and pore charge on the diffusive

and convective transport of the solute. The electrostatic repulsive interaction between

the solute and the pore was found to reduce the transport rate, especially in the case

of large solute size, large charge densities and low ion concentration. The limitation of

the DH approximation to the PB formulation was elucidated for the Boltzmann factor

and this limitation was shown to be also applicable to the hindrance factors.
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