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Abstract. The transport of a spherical solute through a long circular cylindrical pore
filled with an electrolyte solution is studied numerically, in the presence of constant
surface charge on the solute and the pore wall. Fluid dynamic analyses were carried out
to calculate the flow field around the solute in the pore to evaluate the drag coefficients
exerted on the solute. Electrical potentials around the solute in the electrolyte solution
were computed based on a mean-field theory to provide the interaction energy between
the charged solute and pore wall. Combining the results of the fluid dynamic and
electrostatic analyses, we estimated the rate of the diffusive and convective transport
of the solute across the pore. Although the present estimates of the drag coefficients
on the solute suggest more than 10% difference from existing studies, depending on
the radius ratio of the solute relative to the pore and the radial position of the solute
center in the pore, this difference leads to a minor effect on the hindrance factors.
It was found that even at rather large ion concentrations, the repulsive electrostatic
interaction between the solute and the pore wall of like charge could significantly reduce
the transport rate of the solute.
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1. Introduction

The transport of solute molecules through porous membranes has been investigated

extensively in engineering and biological applications, such as microvascular

permeability, glomerular filtration, sieving of macromolecules by artificial porous

membranes and so on. When the solute has a dimension comparable to the size of

the pores, the rate of solute transport tends to be lower than in bulk solution. This

phenomenon, termed hindered transport, can be explained largely by a combination

of steric and hydrodynamic interaction between the permeating solute and the pore

wall. If the solute and the pore wall are electrically charged, then the electrostatic

interaction between them could affect the rate of the hindered transport. In fact,

significant contributions of electric charge to the microvascular permeability have been

reported for capillaries in various tissues (Curry 1984). In the present study, we examine

the electrostatic effect on the hindered transport of charged spherical solutes through

charged circular cylindrical pores, by combining fluid dynamic and electrostatic analyses.

When the radius of the pore and that of the solute molecule greatly exceed that

of solvent molecules, the solute can be treated as a particle and the solvent as a

continuum. Under this condition, Deen (1987) reviewed the hydrodynamic theory for

the hindered transport of solute across porous membranes. He considered a membrane

with circular cylindrical pores of radius rc and length L, separating two reservoirs of

solute concentrations c0 and cL. For a spherical solute of radius a, the solute flux

averaged over the pore cross-section ⟨N⟩ is expressed in terms of the solvent average

velocity V and a potential energy of interaction between the solute and the pore wall E

(Deen 1987):

⟨N⟩ = WV c0
1 − (cL/c0)e

−Pe

1 − e−Pe
, (1)

Pe =
WV L

HD∞
, (2)

H = 2
∫ 1−a/rc

0

1

Ft(β)
e−E(β)/kT βdβ, (3)

W = 2
∫ 1−a/rc

0

F0(β)

Ft(β)
e−E(β)/kT βdβ, (4)

where D∞ represents the diffusivity of the solute in dilute bulk solution, k is the

Boltzmann constant and T is the absolute temperature. The dimensionless variable

β represents the radial position of the solute center relative to the pore radius.

The coefficients Ft and F0 represent hydrodynamic drag coefficients defined as Ft =

F/6πµaU and F0 = F ′/6πµaV , where F is the hydrodynamic force acting on a

solute translating parallel to the pore axis at velocity U in an otherwise quiescent

fluid with viscosity µ, and F ′ is the force exerted on a stationary solute immersed

in a Poiseuille flow through the pore with mean velocity V . The potential energy

E(β) describes the interaction between the solute and the pore wall, such as steric

restriction and electrostatic interaction when the solute center is placed at a radial
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position β in the pore. If only steric restriction is present in uncharged cases, E(β) = 0

for 0 ≤ β < 1 − a/rc and E(β) = ∞ for 1 − a/rc ≤ β ≤ 1. Note that the so-

called Boltzmann factor exp(−E(β)/kT ) appeared in equations (3) and (4) reflects the

probability of finding a solute at a given radial position β in the pore.

Equation (2) defines the Peclet number based on the pore length. The limiting

forms of equation (1) for extremes of the Peclet number are

⟨N⟩ =
HD∞

L
(c0 − cL) for Pe ≪ 1, (5)

⟨N⟩ = WV c0 for Pe ≫ 1. (6)

These expressions imply that the solute transport is dominated by diffusion for Pe ≪ 1

and by convection for Pe ≫ 1, and H and W are related to the rate of the diffusive

transport and the convective transport of the solute, respectively. Since H = W = 1

in the case of a ≪ rc or in an unbounded fluid, these are called hindrance factors.

From equations (5) and (6), Deen (1987) indicated a relationship between the hindered

transport theory and phenomenological transport coefficients for porous membranes.

The solute permeability, which can be measured as the proportional constant of the

solute flux per membrane area to the solute concentration difference (Curry 1984), is

given by γHD∞/L, where γ is the fraction of the membrane surface occupied by pores.

The reflection coefficient, the fraction of solute rejected by the membrane, is given by

1 − W .

In the presence of only steric restriction, Sugihara-Seki (2004) estimated Ft and

F0 for a spherical solute in a circular cylindrical pore, including the cases where the

solvent is a Brinkman medium, and evaluated the solute permeability and the reflection

coefficient. Dechadilok and Deen (2006) provided estimates of the hindrance factors H

and W from equations (3) and (4), by adopting the values of Ft and F0 reported by

Higdon and Muldowney (1995). Higdon and Muldowney (1995) expressed Ft and F0 as

functions of the radial position of the solute center for the size ratios a/rc = 0.05, 0.1,

0.2, ..., 0.9. Although their results of Ft and F0 are in excellent agreement with those of

Sugihara-Seki (2004) for a/rc = 0.3, some discrepancy appears for a/rc = 0.7, especially

at off-center positions of the solute.

The electrostatic interaction between charged solute and pore wall has been studied

for many years. Smith and Deen (1980) developed a model of electrostatic double-layer

interaction between a spherical solute and a circular cylindrical pore, to evaluate its

contributions to the potential energy of interaction E(β). Since their analysis was

limited to axisymmetric positions of the solute and therefore yielded only E(0), they

extended their analysis to include off-axis positions of the solute in the subsequent study

(Smith and Deen 1983). Smith and Deen (1980, 1983) obtained analytical expressions

for E(β), and calculated equilibrium partitioning of solutes between pores and bulk

solution, defined by

Φ = 2
∫ 1−a/rc

0
e−E(β)/kT βdβ. (7)

Quite recently, Dechadilok and Deen (2009) adopted approximate expressions of E(β) to
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estimate the value of H from equation (3), by taking the electric double-layer distortion

into account. They showed that the repulsive electrostatic interaction between the solute

and pore charge could significantly enlarge the hindered effect on the solute diffusion in

pores.

In a previous study (Akinaga et al 2008), we have obtained by a numerical

computation the interaction energy E(β) for a charged solute in a charged cylindrical

pore. Using the values of E(β), we examined the effect of electrostatic interactions on

the osmotic flow across membranes with circular cylindrical pores. Although Akinaga et

al. (2008) employed the Poisson-Boltzmann equation to obtain the electrical potential

and Smith and Deen (1980) adopted its linearized form, i.e. the Debye-Hückel equation,

our obtained values of E(0) for various values of size ratio a/rc agree fairly well with

the corresponding values in Smith and Deen (1980). For off-axis cases, the E(β) values

of our study agree with those of Smith and Deen (1983) to some extent except for the

cases of large β, small ion concentrations and large charge densities.

In the work reported here, we computed the hydrodynamic coefficients Ft and F0 as

well as the interaction energy E(β) based on the Debye-Hückel equation, and estimated

the hindrance factors H and W from equations (3) and (4). The charge on the solute is

taken to be of the same sign as that on the pore wall. Since Dechadilok and Deen (2009)

showed that the effect of the double-layer distortion on the permeability is negligible

for repulsive electrostatic interactions, we do not consider the distortion of the double

layer in the current study. By estimating the values of H and W as functions of size

ratio a/rc, surface charge densities, and ion concentrations in the solvent, we examine

the electrostatic effect on the hindered transport of charged spherical solutes through

charged circular cylindrical pores.

2. Formulation and methods

We consider transport of spherical solutes of radius a across a porous membrane with

circular cylindrical pores of radius rc and length L (rc ≪ L), as shown in figure 1.

The membrane is placed between two solutions with different solute concentrations, c0

and cL (c0 > cL). The solute and the pore wall have uniform constant surface charge of

density qs and qc, respectively, and the solvent is an electrolyte solution containing small

cation and anion which can be regarded as point charge. We consider the case where qs

and qc are of like charge and the electrolytes are univalent-univalent. We denote the ion

concentration in the bulk solution as C0 and assume T = 310 K. The pore is assumed

to be long compared to its radius, so that the end effects of the pore can be neglected.

It is also assumed that the solute volume fraction is small, implying that the mutual

interaction between the solutes can be neglected.
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2.1. Estimate of the interaction energy

The procedures to obtain the interaction energy, or excess free energy, between the

solute and the pore wall were described in Akinaga et al (2008) and Sugihara-Seki et al

(2010). Briefly, we adopted a mean-field theory and the electrical potential ψ around

the solute placed in the pore was described by the Poisson-Boltzmann equation. In

the limit of small ψ, the Poisson-Boltzmann equation can be reduced to the so-called

Debye-Hückel equation:

∇2ψ =
1

λ2
D

ψ, (8)

where λD =
√

εRT/2F 2C0 is the Debye length, defined for a univalent-univalent

electrolyte. Here, ε is the solvent dielectric permittivity, R is the gas constant and

F is the Faraday constant. In the present study, we solved equation (8) for a solute

placed at arbitrary radial positions in the pore, subject to the boundary conditions:

ε∂nψ = −qc on the surface of the pore,

ε∂nψ = −qs on the surface of the solute.
(9)

where ∂n represents the derivative normal to the surface in the solvent region. We have

assumed that the dielectric constants of the membrane material and the solute can be

neglected compared to that of the solvent (Smith and Deen 1980). In the numerical

computation, we employed a spectral element method to obtain the electrical potential

(Akinaga et al. 2008, Sugihara-Seki et al. 2010). By the use of the electrical potential

ψ, we defined the electrostatic energy in the field at a constant charge density q on the

surface ∂V (Smith and Deen 1980):

U =
∫

∂V
dA

∫ q

0
ψdq. (10)

The interaction energy E was obtained as the difference between the electrostatic energy

of the solute-pore system and that of the individual solute and pore at infinite separation,

i.e.

E = UCS − UC − US, (11)

where the subscript CS designates the case in which both solute and pore wall are

electrically charged, the subscript C denotes the case in which only charged pore is

present, and the subscript S denotes the case in which only charged solute is present

(Akinaga et al 2008).

2.2. Estimate of Ft and F0

As mentioned above, the coefficients Ft and F0 in equations (3) and (4) represent the

drag coefficients for a spherical solute translating parallel to the pore axis in an otherwise

quiescent fluid or a stationary solute immersed in a Poiseuille flow. Since the Reynolds

number is extremely small in the cases considered, we solved the Stokes equation and

the continuity equation to obtain the flow field around the solute placed at arbitrary
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radial positions in the circular cylindrical pore. In the numerical computation, we

employed a hp-finite element method (O-tani and Sugihara-Seki 2010, Schawab 1998).

The numerical accuracy of the method was examined closely in O-tani and Sugihara-Seki

(2010). From the velocity field obtained, we computed the hydrodynamic forces exerted

on the solute to estimate Ft and F0 as functions of the radial position of the solute

center β and the size ratio a/rc. In the current study, we did not include electrostatic

effects on the flow field, which is related to the distortion of the double layer.

2.3. Estimate of H and W

The obtained values of E as well as Ft and F0 were inserted into equations (3) and (4)

to compute the values of H and W . The hindrance factors H and W were expressed as

functions of the charge densities qs, qc, the ion concentration C0, and the size ratio a/rc

for prescribed pore radius rc. The numerical integrations in equations (3) and (4) were

performed by employing the Gauss-Lobatto-Legendre formulae of the 10th degree.

3. Results

Even for purely steric case, i.e. E(β) = 0 for 0 ≤ β < 1 − a/rc, it is quite recently that

the dependences of Ft and F0 on β are included in the estimate of H and W (Sugihara-

Seki 2004, Dechadilok and Deen 2006). Sugihara-Seki (2004) computed the values of

Ft and F0 by a finite element method and Dechadilok and Deen (2006) adopted them

from Higdon and Muldowney (1995). Before them, most theoretical studies assumed

centerline approximation such that the values of Ft and F0 in equations (3) and (4) are

equal to the values at β = 0, irrespective of β. Higdon and Muldowney (1995) employed

a spectral boundary element method to compute Ft and F0. For a particle near contact

with the pore wall, they also used a lubrication theory to predict the limiting values, and

they developed compact algebraic expressions which represent the obtained numerical

data over the entire range of β for a/rc < 0.9. Since their results of Ft and F0 do not

agree well with those of Sugihara-Seki (2004) for a/rc = 0.7, we computed Ft and F0

for various a/rc in the current study.

Figure 2 shows a comparison of the present results of Ft and F0 with those given by

Higdon and Muldowney (1995) for small size ratios (see figure 2(a)) and for large size

ratios (see figure 2(b)). Figure 2(a) indicates an excellent agreement of Ft and F0 values

over the whole range of β for small size ratios, while figure 2(b) shows a discrepancy

between the results of Higdon and Muldowney (1995) and the present study for large

size ratios at off-center positions. For comparison, the results of Sugihara-Seki (2004)

are also plotted in figures 2(a) and (b) by dash-dotted lines for a/rc = 0.3 and 0.7, which

are almost visually indistinguishable from the corresponding curves of the present study.

As an example of the interaction energy E(β), figure 3 shows the Boltzmann factor

exp(−E(β)/kT ) as a function of β, for rc = 10 nm, qs = qc = −0.01 C/m2, and

C0 = 0.10 M. This ion concentration corresponds to λD = 0.95 nm for aqueous solutions
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at T = 310 K. Figure 3 indicates a sharp decrease in Boltzmann factor as the size ratio

a/rc increases. It can be also shown that the Boltzmann factor decreases with decreasing

ion concentration or increasing Debye length (Akinaga et al 2008). For comparison, the

corresponding results of Smith and Deen (1983) are plotted by thin lines, which show

some discrepancy from the present results at large β. This discrepancy becomes larger

for the cases of larger Debye length or larger charge densities.

In figures 4 and 5, the hindrance factors H and W are plotted as functions of the size

ratio a/rc for rc = 10 nm, qs = −0.01 C/m2, qc = −0.01, −0.02 C/m2 and C0 = 0.01,

0.04, 0.1, and 0.15 M. Figures 4 and 5 show that both of H and W decrease as the size

ratio a/rc is increased. The H curves are found to decrease more steeply than the W

curves, as already pointed out by Dechadilok and Deen (2006) for uncharged cases. For

reference, the curves of H and W in the absence of electric charge (i.e., qc = qs = 0) are

plotted as thin dotted curves in figures 4 and 5. The thin dotted curves are higher than

any other curves of H and W , indicating that the repulsive electrostatic interaction

decreases the values of H and W or increases the hindrance effect on the diffusive and

convective transport of the solute.

The dependence of H and W on the Debye length is plotted in figures 6 and 7,

respectively, for rc = 10 nm, qs = −0.01 C/m2, qc = −0.01, −0.02 C/m2 and a/rc = 0.2,

0.4, 0.6 and 0.8. The horizontal lines represent asymptotic values corresponding to

uncharged cases. Note that the Debye length represents a characteristic distance of the

charge effect from the surface charge or a characteristic double-layer thickness. It is seen

from figures 6 and 7 that an increase in Debye length or a decrease in ion concentration

diminishes the values of H and W , which corresponds to an enlargement of the hindrance

of the solute transport.

4. Discussion

In the derivation of equations (1)-(4), the effect of solute rotation on the transport

coefficients is neglected, although a freely floating solute usually rotates in the flow

when it is placed at off-center positions in the pore. Sugihara-Seki (2004) computed

the hydrodynamic torques as well as drag forces exerted on a spherical solute when it

is translating or rotating in an otherwise quiescent fluid, or it is immersed stationary in

a pressure driven flow. The effect of the rotational motion on the transport coefficients

was shown to be negligible compared to those by the translational motion and by the

pressure driven flow. In the present study, therefore, we did not include the effect of

solute rotation on H and W .

As shown in figure 2, our obtained values of Ft and F0 are somewhat different from

those given by Higdon and Muldowney (1995) for large size ratios a/rc. For clarity, we

have plotted the differences between the present results and the corresponding values

given by Higdon and Muldowney (1995) in figure 8(a), for a/rc = 0.6, 0.7 and 0.8. It

is seen from figure 8(a) that the discrepancies are small for particles placed near the

pore centerline (small β) and near contact with the pore wall (large β). The differences
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between the two results at β = 0 are within 0.1 %, irrespective of the size ratio. In

contrast, the differences are significant in moderate ranges of β for large size ratios as

shown in figure 8(a). The maximum discrepancies are at most 1 % for a/rc < 0.2, and

several % for a/rc < 0.5, and more than 10 % for a/rc > 0.8.

Quite recently, Bhattacharya et al (2010) developed a method to simulate the

general creeping flow involving the particle-conduit system, and determined the force

on a translating spherical particle in a cylindrical pore or that on a stationary particle

immersed in a pressure-driven parabolic flow. Figure 8(b) shows a comparison of the

Ft or F0 values in the present study, Higdon and Muldowney (1995) and Bhattacharya

et al (2010), for the size ratio a/rc = 0.5. As shown in figure 8(b), the dash-dotted

curves given by Bhattacharya et al (2010) are higher than the other two curves over

the whole range of β. The reason of this discrepancy, especially even at β = 0, is not

apparent. As β increases from zero, the dash-dotted curves seem to approach gradually

the solid curves representing the present results. To authors’ knowledge, there are no

further available reports which can be compared with the present results of the drag

coefficients for off-axis positions.

Since Dechadilok and Deen (2006) adopted the values of Ft and F0 of Higdon

and Muldowney (1995) to estimate H and W for uncharged cases, there may be

some discrepancy between the present results of H and W at qc = qs = 0 and the

corresponding results of Dechadilok and Deen (2006). From a least-squares fit to the H

and W values for 0 < a/rc < 0.95, Dechadilok and Deen (2006) provided the analytic

expressions:

H(λ) = 1 +
9

8
λ ln λ − 1.56034λ + 0.528155λ2 + 1.91521λ3

− 2.81903λ4 + 0.270788λ5 + 1.10115λ6 − 0.435933λ7,
(12)

W (λ) = (1 − λ)
1 + 3.876λ − 1.907λ2 − 0.834λ3

1 + 1.867λ − 0.741λ2
, (13)

where λ = a/rc. These curves are plotted as thin dashed curves in figures 4 and 5,

respectively, for comparison. In these figures, the thin dotted curves of the present

results and the corresponding thin dashed curves by Dechadilok and Deen (2006) are

very close to each other, indicating that the differences in Ft and F0 values have little

effects on the hindrance factors H and W .

For charged cases, figures 4-7 indicate that the electrostatic repulsive interaction

decreases the hindrance factors H and W . This effect is more significant for smaller ion

concentration or larger Debye length. Even at rather large ion concentrations (C0 ∼ 0.15

M or rc/λD ∼ 12.8) corresponding to the physiological range of the blood, the H and W

values are affected significantly by the electrostatic interaction between the solute and

pore charge. Dechadilok and Deen (2009) reported a similar effect on H by adopting

approximate expressions of E(β). Since they are interested in the contribution of the

double-layer distortion caused by particle motion to H, which is minimized for small

Debye lengths (large C0) and amplified for large Debye lengths (small C0), the parameter

values they examined are confined to rather large Debye lengths. In the present study,
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in contrast, we have restricted our analyses to the cases of smaller Debye lengths, where

the Debye-Hückel approximation is appropriate (Smith and Deen 1980). Accordingly,

we cannot compare directly our results with those of Dechadilok and Deen (2009).

In the present study, we assumed that electric charge influences only the equilibrium

distribution of solute within the pore, i.e. the interaction energy E, and neglected the

charge effect on Ft or F0 which may be caused by the distortion of the electric double

layer. Dechadilok and Deen (2009) investigated the effect of the double-layer distortion

on H, and concluded that the electrostatic effect on E is more important determinant

of the overall diffusive permeability. Thus, inclusion of the double-layer distortion in

the analysis would not change the conclusion of the present study.

In evaluating the interaction energy, we have adopted the Debye-Hückel equation, a

linearized form of the Poisson-Boltzmann equation, to calculate the electrical potential.

A recent study of Bhalla and Deen (2009) reported that the Boltzmann factors are nearly

identical in a certain range of parameters, irrespective of whether they are derived from

the Poisson-Boltzmann equation or from the Debye-Hückel equation. However, our

preliminary study indicated some discrepancy between them in a similar parameter

range (Akinaga and Sugihara-Seki 2011). This discrepancy will be considered in the

study subsequent to this work (Akinaga et al. 2011).

5. Conclusion

We examined the electrostatic effect on the solute transport across a membrane with

circular cylindrical pores, by combining numerical results of the hydrodynamic and

electrostatic analyses. It was found that the electrostatic repulsive interaction between

the solute and pore charge on the solute and the pore wall could enhance the hindrance

of the solute transport, especially at the cases of large solute size, large charge densities

and low ion concentration.
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Figure 1. Sketch of the solute transport across a membrane with circular cylindrical
pores of radius rc and length L. Spherical solutes of radius a are suspended in an
electrolyte solution containing small ions. The surfaces of the pore wall and solutes
are electrically charged with constant densities qc and qs, respectively.
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Figure 2. Drag coefficients Ft and F0 for (a) a/rc = 0.2 (rectangles), 0.3 (triangles)
and 0.4 (circles) and for (b) a/rc = 0.6 (rectangles), 0.7 (triangles) and 0.8 (circles).
Closed symbols represent the values of Ft and open symbols represent the values of F0.
The solid lines are the present results and the dashed lines are the results obtained by
Higdon and Muldowney (1995). For comparison, the results obtained by Sugihara-Seki
(2004) are plotted by dash-dotted lines for a/rc = 0.3 in (a) and a/rc = 0.7 in (b).
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Figure 3. The Boltzmann factor exp(−E(β)/kT ) as a function of the relative radial
position of the solute center, for rc = 10 nm, qs = qc = −0.01 C/m2, C0 = 0.10 M
and a/rc = 0.3 (solid line), 0.5 (dashed line), 0.7 (dotted line) and 0.8 (dash-dotted
line). The corresponding results of Smith and Deen (1983) are plotted by thin lines,
for comparison.
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Figure 4. The hindrance factor H as a function of the size ratio a/rc for rc = 10
nm, qs = −0.01 C/m2, qc = −0.01, −0.02 C/m2 and C0 = 0.01 M (circles), 0.04 M
(triangles), 0.1 M (rectangles), and 0.15 M (diamonds). The solid lines represent the
values for qc = −0.01 C/m2 and the dashed lines represent the values for qc = −0.02
C/m2. The results of uncharged cases are given by thin dotted line (the present result)
and by thin dashed line (equation (12)).
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Figure 5. The hindrance factor W as a function of the size ratio a/rc for rc = 10
nm, qs = −0.01 C/m2, qc = −0.01, −0.02 C/m2 and C0 = 0.01 M (circles), 0.04 M
(triangles), 0.1 M (rectangles), and 0.15 M (diamonds). The solid lines represent the
values for qc = −0.01 C/m2 and the dashed lines represent the values for qc = −0.02
C/m2. The results of uncharged cases are given by thin dotted line (the present result)
and by thin dashed line (equation (13)).
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Figure 6. The hindrance factor H as a function of the ratio rc/λD, for rc = 10 nm,
qs = −0.01 C/m2, qc = −0.01, −0.02 C/m2 and a/rc = 0.2 (solid lines), 0.4 (dashed
lines), 0.6 (dotted lines) and 0.8 (dash-dotted lines). The thick lines represent the
values for qc = −0.01 C/m2 and the thin lines represent the values for qc = −0.02
C/m2. The horizontal lines on the right side indicate asymptotic values approached
at high ion concentrations.
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Figure 7. The hindrance factor W as a function of the ratio rc/λD, for rc = 10 nm,
qs = −0.01 C/m2, qc = −0.01, −0.02 C/m2 and a/rc = 0.2 (solid lines), 0.4 (dashed
lines), 0.6 (dotted lines) and 0.8 (dash-dotted lines). The thick lines represent the
values for qc = −0.01 C/m2 and the thin lines represent the values for qc = −0.02
C/m2. The horizontal lines on the right side indicate asymptotic values approached
at high ion concentrations.
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Figure 8. (a) Differences of the drag coefficients between the present study and
Higdon and Muldowney (1995) compared to the present results, ∆Ft/Ft and ∆F0/F0,
for the size ratios a/rc = 0.6 (rectangles), 0.7 (triangles) and 0.8 (circles). The solid
symbols represent ∆Ft/Ft and the open symbols represent ∆F0/F0. (b) The drag
coefficients Ft and F0 for a/rc = 0.5 as functions of the relative radial position of the
solute center. The solid and open circles represent the Ft and F0 values of the present
study, respectively. The dashed lines denote the corresponding values obtained by
Higdon and Muldowney (1995), and dash-dotted lines by Bhattacharya et al (2010).


