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Abstract. In channel flow of multicomponent suspensions, segregation behavior of suspended components perpendicular to
the flow direction is often observed, which is considered to be caused by the differential properties of the lateral migration
depending on their shape, size, flexibility, and other characteristics. In the present study, we investigate the effect of size
differences between suspended components on the segregation behavior, by a two-dimensional numerical simulation for binary
dispersed suspensions of fluid droplets of two different sizes subjected to a plane Poiseuille channel flow. The small and large
droplets are assumed to have equal surface tensions and equal viscosity ratios of internal to external fluids. The time evolutions
of the lateral positions of large and small droplets relative to the channel centerline were computed by changing the area
fraction of the small droplets in a mixture with a constant total area fraction. The large droplets are found to migrate closer to
the channel centerline and the small droplets are found to migrate closer to the channel wall compared to the corresponding
lateral positions in mono-dispersed suspensions at the same area fractions, although the mean lateral positions of the large and
small droplets in mono-dispersed suspension are comparable. This segregation behavior as well as the margination of small
droplets are enhanced when the size difference between large and small droplets is increased and the area fraction of large
droplets is increased. These results may arise from higher tendencies for the large droplets to approach the channel centerline
compared to the small droplets, which consequently expel small droplets from the central region toward the channel walls.
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1. Introduction

In the flow of suspensions, the migration of suspended particles perpendicular to the flow direction
is gaining considerable attention in a variety of fields [14], although numerous phenomena related to
lateral migration have long been known in fluid mechanics. For example, rigid spheres suspended in a
Poiseuille flow through circular tubes migrate toward a certain radial position apart from the centerline
at finite Reynolds numbers, which is referred to as the tubular pinch effect or the Segré–Silberberg
effect [20]. In contrast, deformable particles in tube flows migrate toward the tube centerline at low
and moderate Reynolds numbers [9,10]. Chiral particles subjected to shear flows move parallel to the
vorticity vector, i.e., perpendicular to the main flow, and their direction of motion could be opposite,
depending on the particle’s handedness [16].

Due to the different migration properties of suspended particles, multicomponent suspensions often
display segregation behaviors in channel flow in such a way that one component approaches the center-
line of the channel, whereas another component migrates toward the walls of the channel. One prominent
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example is blood flow through microvessels or microchannels. Blood is primarily a suspension of red
cells with a small number of white cells and platelets. Normal red cells are highly deformable, and so
tend to approach the vessel centerline, and a red-cell-depleted layer, referred to as the cell-free layer, is
formed along the periphery of vessels. On the other hand, platelets, which are much smaller and less
deformable compared to red cells, are displaced from the vessel centerline and are plentiful in the vicin-
ity of the vessel wall [1,5,19,22,23,25,26]. This phenomenon is commonly referred to as margination,
or near-wall excess (NWE). White blood cells, which are larger and much less deformable compared to
red cells, are also known to marginate near the vessel wall in venules, especially under low-flow con-
ditions [7,11,17,18]. The margination of platelets and white cells in blood flow is evidently expedient
in hemostatic and immune functions, respectively, at physiological and pathological states. Recently,
microfluidic devices have been developed to separate blood components based on differences in their
migration properties [21].

Several previous simulation studies, as well as model studies, have investigated the lateral migration
and segregation behaviors of multicomponent suspensions [4,6,8,28]. Despite the importance of segre-
gation phenomena, its mechanism has not yet been fully elucidated. Direct fluid mechanical simulations
of mixed suspensions containing floppy and stiff particles have recently demonstrated that the mem-
brane rigidity of suspended particles play a crucial role in their segregation behavior in confined flows
[12,13,15].

In the present study, we focus on the effect of the size difference in suspended particles and simulate
their lateral migration behaviors using suspensions of two-dimensional fluid droplets of two different
sizes in a channel flow. The surface tension and viscosity ratio of the internal to external fluids are as-
sumed to be the same for large and small droplets. The motion and deformation of droplets immersed in
a plane Poiseuille flow through a two-dimensional channel are computed using a front-tracking method
[24]. The breakup and coagulation of the droplets are not considered in the current study.

The front-tracking method is an efficient numerical scheme for analyzing the dynamics of multiphase
flows, containing droplets, capsules, or blood cell models. The circumference of suspended particles is
expressed using Lagrangian meshes, which are superimposed on an Eulerian mesh for the Navier–Stokes
equations’ solver. The nodes on the Lagrangian mesh are advected with a velocity that is determined by
interpolation of the velocities on neighboring Eulerian nodes.

The remainder of the present paper is organized as follows. In Section 2, the proposed simulation
method using a two-dimensional front-tracking method is introduced, and the numerical accuracy of the
developed simulator is assessed. In Section 3, the formulation and simulation procedure is presented.
In Section 4, the results of the simulation for binary dispersed suspensions of fluid droplets, as well as
mono-dispersed suspensions, are presented. Finally, a summary is presented in Section 5.

2. Simulation method

We consider the flow of suspensions of droplets, the viscosity of which is η and the mass density of
which is ρ. The droplets are suspended in a Newtonian fluid having viscosity ηs and density ρs. The
velocity v(r) and the pressure p(r) of the fluids in the presence of a volume force f are governed by the
Navier–Stokes equations:

ρα

(
∂v
∂t

+ v · ∇v
)

= −∇p+∇ · ηα
(
∇v + (∇v)t

)
+ f, (1)
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Fig. 1. Front of a droplet. (a) The information of the traction force and the velocity is exchanged between the droplet nodes and
the fluid nodes by an interpolation using area weight functions. (b) The weight of the ith nodal value is the area fraction Wi
(i = 0, 1, 2, 3).

and the continuity equation,

∇ · v = 0, (2)

where ρα = ρs or ρ, and ηα = ηs or η for the external or internal fluid of the droplet. In the absence of
external forces, the volume force results from the surface tension of the droplets, σ, which is given by

f = σκnδ(r), (3)

where κ is the curvature of the interface, n is unit normal on the interface, and δ(r) is a delta function,
which is equal to zero except at droplet interfaces. We solve these equations to obtain v(r) and p(r) using
an implicit fractional step method [24].

For analyzing the dynamics of droplets, we adopt a front-tracking method [24]. The front or the
interface of a droplet is represented by connected marker points that are moved by the fluid (Lagrangian
mesh). As shown in Fig. 1, this Lagrangian mesh is immersed in a regular grid used for solving the fluid
motion (Eulerian mesh). We refer to the marker points on the interface as droplet nodes and refer to the
grid points as fluid nodes.

Exchange of information, such as the force and the velocity, between the droplet nodes and the fluid
nodes is necessary. The traction f(rd) at a droplet node, where rd is the position of the node, is distributed
to neighboring fluid nodes rl in such a way that:

f(rl) =
∑

W (rl − rd)f(rd)
ΔS

ΔxΔy
, (4)

where the summation is made over the droplet nodes, W (r) is a weight function, ΔS is the averaged
length between node l and adjacent nodes, and Δx and Δy are the grid spacings of the Eulerian mesh. In
the current study, the traction is assigned to four nearest fluid nodes and the weight function is given by

W (r) = d

(
rx
Δx

)
d

(
ry
Δy

)
, (5)
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where rx and ry are the x- and y-components of r.

d(r) =

{ 1 − r, 0 < r < 1,
1 + r, −1 < r < 0,
0, |r| � 1.

(6)

Here, Eqs (5) and (6) indicate that the weight function in Eq. (4) corresponds to the area fraction, as
shown in Fig. 1(b). Although smoother distribution functions than the area weight functions are some-
times recommended, the area weight function worked well in the present study. Thus, we used this
weight function, which is easy to implement.

In a similar manner, the velocity on the droplet node is evaluated by a weighted summation of the
velocities on neighboring fluid nodes:

v(rd) =
∑

W (rd − rl)v(rl). (7)

When the velocities on the droplet nodes at time step n are obtained, their new positions at the next
time step are given based on the first-order Euler method by:

rn+1
d = rnd + vn(rd)Δt, (8)

where Δt is time increment in a step. However, this simple update method sometimes leads to a drastic
change in distance between adjacent nodes, which makes the time marching of the advection of the
droplet nodes unstable. In order to avoid this instability, we adopt an algorithm in which the droplet
nodes are moved in the tangential direction along the droplet interface, according to Ref. [30].

As the droplet interface advects, the viscosity and density near the interface must be updated. Rather
than the method using a Poisson equation proposed by Tryggavson et al. [24], we herein adopt an ap-
proach by Zhang et al. [27] in terms of a smoothed Heaviside function for reducing the computational
time.

There are several numerical schemes to avoid overlapping of neighboring droplets. In the present
study, we introduce a buffer-zone around each droplet to track the distance between droplets that are
identified as undergoing collision, in a way similar to Almomani et al. [2]. We set the thickness of the
buffer-zone to equal the grid spacing, within which neighboring droplet surfaces cannot approach each
other by forcing the vertex on the surface to move in the direction normal to the droplet surface. This
algorithm is also used to avoid overlapping between a droplet and the channel wall.

In order to assess the accuracy of our simulator, we have applied the present numerical method to
a single droplet immersed in a Couette flow between two-parallel plates and compared the obtained
results with previous studies. For a droplet of the viscosity ratio η/ηs = 1 and the size ratio Ly/a = 8,
where a is the droplet radius at rest and Ly is the distance between the two plates, we computed the
time evolution of the droplet shape in the Couette flow, starting from an undeformed circular shape and,
in Fig. 2, plotted the deformation parameter D and the orientation angle θ relative to the undisturbed
flow for stationary shapes as a function of the capillary number Ca = 2ηsu0a/σLy. Here, u0 is the
velocity of the plates, and D = (L − M )/(L + M ), where L and M are the major and minor axes
of an ellipse approximating the droplet shape. A comparison of this figure with Fig. 2(c) in Zhou and
Pozrikidis [29], which treated the same problem using the boundary integral method, exhibited close
agreement. In particular, for small Ca, at which we consider the flow of suspensions in the following
sections, the agreement was excellent.
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Fig. 2. The deformation parameter and the orientation angle for droplets of η/ηs = 1 and Ly/a = 8 in a Couette flow as a
function of the capillary number Ca.

3. Problem statement

We consider binary dispersed suspensions of large and small droplets immersed in a plane Poiseuille
flow in a two-dimensional channel, as shown in Fig. 3. The distance between the two channel walls is
expressed as Ly, and the computational domain has length Lx in the flow direction. The radius of the
large droplets at rest is denoted as a0, which will be taken as the unit of length throughout the present
study, and we herein treat the cases of Lx/a0 = 16 and Ly/a0 = 9.6.

Poiseuille flow is induced by applying a pressure difference, Δp, across upstream and downstream
sections of the channel, where we apply a periodic boundary condition. No-slip boundary conditions,
i.e., v = 0, are imposed on the surfaces of the channel walls. As an initial condition for the velocity field,
we assume a Poiseuille flow, the maximum velocity of which is given by umax = (ΔpL2

y)/(8ηsLx) in the
absence of droplets.

We express the radius of small droplets at rest as a1 and the numbers of the large and small droplets
in the computational domain as N0 and N1, respectively. It is assumed that the large and small droplets
have the same surface tension σ and the same viscosity η.

The area fractions of the large and small droplets, φ0 and φ1, and the area fraction of the mixture, φ,
are defined by

φ0 =
N0πa

2
0

Lx · Ly
, φ1 =

N1πa
2
1

Lx · Ly
(9)

and

φ = φ0 + φ1. (10)

The ratio of the small droplets in the mixture, ψ, is given by

ψ = φ1/φ. (11)
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Fig. 3. Configuration for binary dispersed suspensions of large and small droplets. The large droplets have radius a0 at rest,
and the small droplets have radius a1 at rest. We consider a pressure-driven flow in a two-dimensional channel of width Ly ,
induced by applying a pressure difference Δp across a distance Lx in the flow direction.

We are interested in the lateral positions of the droplets. Thus, we define the mean lateral position of
the droplet α relative to the channel centerline as

〈yα〉 =

√√√√ 1
Nα

Nα−1∑
i=0

(
yα,i −

Ly

2

)
, α = 0, 1, (12)

where yα,i represents the distance of the center of the ith droplet of α kind from the lower wall of the
channel. In the present simulation, we examine 〈y0〉 and 〈y1〉 as a function of time.

There are four important non-dimensional parameters: the Reynolds number Re = ρsa0umax/ηs, the
capillary number Ca = ηsa0umax/σLy, the viscosity ratio η/ηs and the density ratio ρ/ρs. As a first step
to study the size segregation of droplets, we start with a case in which the inertial effect is not important
and the deformation of the droplets is not large. For that purpose, the present study is confined to the
case of Re = 0.72, Ca = 0.075, η/ηs = 1 and ρ/ρs = 1. More general cases will be considered in
our subsequent studies. In the present work, we focus on the effects of the size difference a1/a0 and the
fractional ratio ψ on the segregation behavior.

The initial configurations of the droplets are chosen according to the results of a molecular dynam-
ics simulator for rigid beads, COGNAC [3] of OCTA, which can be accessed at http://octa.jp. The
COGNAC simulation can determine the positions of rigid beads of radius a0 or a1, the interaction energy
of which reaches the minimum under a truncated Lennard–Jones potential and a Lennard–Jones wall.
In the present study, we examine cases involving various values of a1, φ0, φ1 and ψ. For each case, we
performed such COGNAC simulations five times to obtain five sets of initial configurations of droplets
for the present study. In the next section, we report the ensemble averaged values of the results over five
runs starting from these configurations.
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4. Results and discussion

4.1. Mono-dispersed suspensions

Before examining binary dispersed suspensions, we first simulate the behaviors of mono-dispersed
suspensions of large or small droplets as a reference state. We consider the cases of the droplet radius at
rest, with a being a0, a0/

√
2, a0/

√
3 or a0/2.

As examples of initial configurations for mono-dispersed suspensions, Fig. 4(a) and (c) are snapshots
at non-dimensional time tumax/a0 = 0 for the droplet radii of a0 and a0/2, respectively, for an area
fraction of φ = 0.511. Starting from these initial configurations, we obtained the configurations shown
in Fig. 4(b) and (d), respectively, at tumax/a0 = 2,778, which is the final computation time.

Figure 4(a) shows four rows of droplets aligned along the flow direction. These rows of droplets are
also shown in Fig. 4(b). These rows are found to be quite stable over the computational time. Comparison
of Fig. 4(a) and (b) reveals that the rows next to the lower and upper channel walls move closer to the
channel walls, and the droplets in these rows deform more than the droplets in the other rows due to
the larger velocity gradients in the vicinity of the channel walls. On the other hand, for small droplets
of radius a0/2, as shown in Fig. 4(d), small droplets seldom form long, stable rows, and their lateral
positions are changed stochastically as a result of fluid dynamic interactions with neighboring droplets,
despite having the same area fraction, i.e., φ = 0.511, as shown in Fig. 4.

Figure 5(a) and (b) shows final snapshots of mono-dispersed suspensions at tumax/a0 = 2,778 for the
droplet radius a0 and a0/2, respectively. Figure 5(a) shows that, at a low area fraction of φ = 0.102,
large droplets of radius a0 are almost aligned in two rows parallel to the flow direction. Moreover, these
droplets form three rows at φ = 0.205 and four rows at φ = 0.409. On the other hand, Fig. 5(b) shows
that small droplets of radius a0/2 are distributed almost randomly in the channel and are occasionally
aligned parallel to the flow direction, except next to the channel walls.

Figure 6(a) and (b) shows the time evolutions of the mean lateral positions of droplets for radii of
a = a0 and a0/2, respectively. In the case of low area fractions, such as φ = 0.102 and φ = 0.205, the
mean lateral positions of both types of droplets decrease with time, indicating that the droplets migrate

Fig. 4. Snapshots of mono-dispersed suspensions of droplets of radius a with area fraction φ = 0.511. (a) a = a0,
tumax/a0 = 0, (b) a = a0, tumax/a0 = 2,778, (c) a = a0/2, tumax/a0 = 0 and (d) a = a0/2, tumax/a0 = 2,778.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/BIR-130638.)
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Fig. 5. Snapshots of mono-dispersed suspensions of droplets for various area fractions φ: (a) a = a0 and (b) a = a0/2. From
top to bottom, the images show the cases for φ = 0.102, 0.205, 0.307, 0.409 and 0.511. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/BIR-130638.)

toward the channel centerline with time. In particular, at φ = 0.102, the final mean lateral positions
at tumax/a0 = 2,778 are much closer to the channel centerline compared to the initial positions. This
result may be well understood from the fact that isolated liquid drops or deformable particles immersed
in channel flow approach the channel centerline at low Reynolds numbers [9,10]. In contrast, at higher
area fractions, Fig. 6 shows that the mean lateral positions of the large droplets increase with time, which
is evidently due to mutual interactions of the droplets, whereas the mean lateral positions of the small
droplets are almost constant. The final mean lateral positions are found to increase with increasing area
fraction φ for both types of droplets. This behavior is summarized in Fig. 7, including the behaviors for
other droplet radii.

Figure 7 shows the mean lateral positions averaged over the last 1,000 units of non-dimensional time
as a function of the area fraction for radii of a0, a0/

√
2, a0/

√
3 and a0/2. The terminal mean lateral

positions obtained in this manner vary similarly with φ for all types of droplets. In particular, the three
lines for a = a0/

√
2, a0/

√
3 and a0/2 in Fig. 7 are almost indistinguishable.

4.2. Binary dispersed suspensions

Next, we consider the lateral migration of binary dispersed suspensions of large and small droplets.
The large droplets have a radius of a0 at rest, and the small droplets have a radius of a1 at rest. In this
subsection, we report the results for varying the ratio ψ while the total area fraction φ is kept constant.
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Fig. 6. Time evolutions of the mean lateral positions of mono-dispersed suspensions for φ = 0.102, 0.205, 0.307, 0.409 and
0.511: (a) a = a0 and (b) a = a0/2.

Several examples of snapshots at the final computational time are shown in Fig. 8. Figure 8(a)–(c) rep-
resents the cases of a1 = a0/

√
2, a0/

√
3 or a0/2, respectively, at ψ = 0.4 and φ = 0.511, corresponding

to the cases of φ0 = 0.307 and φ1 = 0.205. In Fig. 8(a), large and small droplets of comparable sizes
are distributed randomly in the mixture in the channel, whereas in Fig. 8(c), the arrangement of the large
droplets in the presence of much smaller droplets appears similar to that of mono-dispersed suspensions
of the large droplets shown in Fig. 5(a) at the same area fraction of φ0 ≈ 0.3. Figure 8(d) shows a
snapshot for a1 = a0/2 at ψ = 0.8 and φ = 0.511 which corresponds to the case of φ0 = 0.102 and
φ1 = 0.408. Comparison of this figure with Fig. 5(a) at φ0 ≈ 0.1 reveals a similarity in the arrangement
of the large droplets. Together with the similarity between Figs 8(c) and 5(a) at φ0 ≈ 0.3 mentioned
above, this result indicates that the presence of the small droplets of radius a1 = a0/2 has a slight ef-
fect on the large droplet configuration itself, although a line of small droplets is often formed next to
the channel wall in binary dispersed suspensions (Fig. 8(c) and (d)). This line formation of the small
droplets is expected to decrease the mean lateral position of the large droplets and to increase the mean
lateral position of the small droplets.
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Fig. 7. Mean lateral positions of mono-dispersed suspensions averaged over the last 1,000 units of non-dimensional time for
a = a0 (cross symbols), a0/

√
2 (circles), a0/

√
3 (triangles) and a0/2 (squares) as a function of the area fraction φ. y0 and y1

represent the distance of large and small droplet centers from the channel centerline, respectively.

Fig. 8. Snapshots of binary dispersed suspensions of large and small droplets for φ = 0.511 at tumax/a0 = 2,778:
(a) a1 = a0/

√
2, ψ = 0.4, (b) a1 = a0/

√
3, ψ = 0.4, (c) a1 = a0/2, ψ = 0.4 and (d) a1 = a0/2, ψ = 0.8. (Colors

are visible in the online version of the article; http://dx.doi.org/10.3233/BIR-130638.)

Figure 8(c) and (d) shows that the small droplets of radius a1 = a0/2 are distributed in the spaces
among the large droplets. In other words, the small droplets are expelled from the central region toward
the channel wall by the large droplets, due to higher tendencies for the large droplets to approach the
channel centerline compared to the small droplets. Thus, the mean lateral positions of the small droplets
are expected to be larger, whereas the mean lateral positions of the large droplets are expected to be
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smaller than the corresponding values of mono-dispersed suspensions at the same area fractions. These
features can be confirmed below in Fig. 11.

The simulations of the present study indicate that the line of small droplets formed adjacent to the
lower wall in Fig. 8(b) sometimes breaks and becomes shorter or longer with time, whereas the line
remains longer in Fig. 8(c) and (d). This trend indicates that the lines of small droplets are more stable
when the size difference between large and small droplets is larger.

Figures 9 and 10 show the time evolutions of the mean lateral positions of large and small droplets
for radii of the small droplets of a1 = a0/

√
2 and a0/2, respectively. Figure 9 shows that the mean

lateral positions of small droplets for a1 = a0/
√

2 are approximately constant with time for various
values of ψ and that their final values are approximately the same, irrespective of ψ, although the final
positions of the large droplets decrease slightly with ψ. In contrast, for the case of a1 = a0/2 shown in
Fig. 10 the mean lateral positions of small droplets increased considerably, and those of large droplets
decreased significantly with time, except for the case of ψ = 0, i.e., in the absence of small droplets
(mono-dispersion). These results for a1 = a0/2 indicate that the small droplets are displaced further

Fig. 9. Time evolutions of the mean lateral positions of binary dispersed suspensions for a1 = a0/
√

2, at φ = 0.511 and
ψ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. (a) Mean lateral positions of large droplets 〈y0〉/a0, (b) mean lateral positions of small
droplets 〈y1〉/a0.
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Fig. 10. Time evolutions of the mean lateral positions of binary dispersed suspensions for a1 = a0/2 at φ = 0.511 and ψ = 0,
0.2, 0.4, 0.6, 0.8 and 1.0. (a) Mean lateral positions of large droplets 〈y0〉/a0, (b) mean lateral positions of small droplets
〈y1〉/a0.

from the channel centerline or migrate toward the channel walls with time and that the large droplets
in the mixture move toward the channel centerline. These behaviors correspond to the segregation of
binary dispersed suspensions, as shown more clearly in Fig. 11.

The variations of the terminal mean lateral positions of large and small droplets are shown in Fig. 11
as a function of ψ, for a1 = a0/

√
2, a0/

√
3 and a0/2 at φ = 0.511. For reference, the averaged lateral

positions in the mixture are calculated by:

〈y〉 = (1 − ψ)〈y0〉+ ψ〈y1〉. (13)

The values of 〈y〉/a0 are also plotted by dashed lines for a1 = a0/
√

2, a0/
√

3 and a0/2 in Fig. 11.
These three lines approximately coincide with each other, being nearly constant but slightly concave
curves as a function of ψ. This concavity suggests that the mixture of large and small droplets may
decrease their averaged mean lateral positions compared to the mono-dispersion for a constant φ.
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Fig. 11. Mean lateral positions of large droplets (open symbols) and small droplets (closed symbols) averaged over the last
1,000 units of non-dimensional time at φ = 0.511 for a0/

√
2 (circles), a0/

√
3 (triangles) and a0/2 (squares). Dashed lines

represent the averaged lateral positions in the mixture 〈y〉/a0.

In Fig. 11, comparison of closed symbols for small droplets and the corresponding open symbols
for large droplets reveals that the mean lateral positions of the small droplets are always larger than
those of the large droplets, indicating the segregation of droplets induced by the size difference. For
a1 = a0/

√
3 and a0/2, the difference between 〈y1〉/a0 and 〈y0〉/a0 is significant and is greater than

unity (the difference between 〈y1〉 and 〈y0〉 is larger than a0) for ψ larger than 0.4, whereas the difference
is small for a1 = a0/

√
2. These results suggest that a certain difference between large and small droplet

sizes is necessary in order to generate substantial segregations of droplets.
The variations of 〈y0〉 and 〈y1〉 with ψ in Fig. 11 indicate that, with an increasing fraction of small

droplets, the large droplets become displaced toward the channel centerline, whereas, with an increasing
fraction of large droplets, the small droplets become displaced toward the channel wall. These trends
are parallel to the segregation behavior of stiff and floppy particles reported in Kumar and Graham
[13], which numerically treated the binary suspension of stiff and floppy particles subjected to a plane
channel flow. They reported that stiff particles are increasingly displaced toward the channel walls with
an increasing fraction of floppy particles, whereas the floppy particles increasingly accumulate near the
channel centerline with increasing fraction of stiff particles (see Fig. 4 in [13]). Thus, the behaviors of
the large and small droplets in the present study are similar to those of the floppy and stiff particles,
respectively. They demonstrated through a model study of heterogeneous pair collisions involving stiff
and floppy particles that, compared to the floppy particle, the stiff particle experiences a larger cross-
stream displacement as a result of the collision and explained the segregation of the floppy and stiff
particles in the mixture by applying this result to floppy and stiff particles placed in the near-wall region.
Our preliminary study of collisions of droplets suspended in Couette flow showed that, as a result of
pair collisions of a large and a small droplet, the lateral displacement of the small droplet is larger than
that of the large droplet, which is in accord with Ref. [13] if the small droplet is replaced by the stiff
particle and the large droplet is replaced by the floppy particle. Accordingly, a similar discussion to that
of Kumar and Graham [13] may be applied to explain the segregation behavior shown in Fig. 11.

Note that, in Fig. 11, the terminal mean lateral positions of the small droplets attain the maximum,
i.e., the margination of the small droplets is the most enlarged, at ψ = 0.4. There may be a value of ψ at
which the margination is most efficiently induced by the size difference.
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So far, the cases for the total area fraction φ = 0.511 have been reported. For φ ≈ 0.2, 0.3 and 0.4,
we have obtained similar plots to Fig. 11. It is found that the variations of 〈y0〉 and 〈y1〉 with ψ are
qualitatively similar for all cases we have examined.

In the present study, we have investigated the difference in size of suspended droplets while maintain-
ing the surface tension and the viscosity ratio of the internal and external fluids constant. The surface
tension and the viscosity ratio affect the extent of deformation of the droplets as well as the migration
velocity subjected to shear. The effects of these factors on segregation and margination will be reported
in a future study. Additionally, in order to elucidate the mechanism of the segregation behavior presented
here and to reveal the scaling behavior of binary dispersed suspensions of droplets, we are now refining
our simulation system to cover wider range of capillary numbers and other parameter values.

We briefly mention the advantages and limitations of using two-dimensional simulations. The dynam-
ics of suspension of flexible particles are complex and a number of phenomena are not well understood.
A two-dimensional approach allows exploration of effects that can occur in a system with fewer degrees
of freedom, allowing more systematic exploration of parameter space and facilitating interpretation of
the results. On the other hand, there may be other significant effects that come into play in three di-
mensions. The findings and predictions from two-dimensional models should ultimately be tested using
three-dimensional simulations and experimentally.

5. Summary

The motion and deformation of mono-dispersed and binary dispersed suspensions of droplets sub-
jected to a pressure-driven flow in a two-dimensional channel are calculated by a front-tracking method.
In the mono-dispersed suspensions, the terminal mean lateral positions of the droplets increase in a simi-
lar manner with increasing area fraction for all of the droplet radii considered herein. In binary dispersed
suspensions of large and small droplets, the configurations of the large droplets are only weakly affected
by the presence of the small droplets if there is a certain difference in size between large and small
droplets. The small droplets are distributed in the spaces among the large droplets and often form a line
along the channel wall. As a result, the mean lateral positions of the large droplets become closer to the
channel centerline and those of the small droplets become closer to the channel wall, as compared to the
mono-dispersed suspension. This segregation, as well as the margination of small droplets, is enhanced
as the size difference of the droplets and the area fraction of large droplets increase.
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