
Computer-generated holograms for three-dimensional
surface objects with shade and texture

Kyoji Matsushima

Digitally synthetic holograms of surface model objects are investigated for reconstructing three-
dimensional objects with shade and texture. The objects in the proposed techniques are composed of
planar surfaces, and a property function defined for each surface provides shape and texture. The field
emitted from each surface is independently calculated by a method based on rotational transformation
of the property function by use of a fast Fourier transform (FFT) and totaled on the hologram. This
technique has led to a reduction in computational cost: FFT operation is required only once for calculating
a surface. In addition, another technique based on a theoretical model of the brightness of the recon-
structed surfaces enables us to shade the surface of a reconstructed object as designed. Optical recon-
structions of holograms synthesized by the proposed techniques are demonstrated. © 2005 Optical
Society of America
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1. Introduction

Computer-generated holograms for three-
dimensional (3-D) displays, sometimes called digi-
tally synthetic holograms, are desired media for
creating 3-D autostereoscopic images of virtual ob-
jects. However, the technology suffers from two prob-
lems: the necessity for extremely high spatial
resolution to fabricate or display the holograms, and
long computation times for the creation, especially in
full parallax holograms.

For the past decade, techniques using point sources
of light have been widely used to calculate object
waves.1,2 This point source method is simple in prin-
ciple and potentially the most flexible for synthesiz-
ing holograms of 3-D objects. However, because it is
too time consuming to create full parallax holo-
grams,3 many methods to reduce the computation
time, including geometric symmetry,4 look-up tables,3
difference formulas,5 recurrence formulas,6 employing
computer-graphics hardware,7 and constructing spe-
cial CPUs,8 have been attempted.

Point source methods for calculating spherical

waves emitted from point sources are commonly ray
oriented. As they trace the ray from a point source to
a sampling point on the hologram, the procedure is
sometimes referred to as ray tracing.2 However, there
are also wave-oriented methods to calculate object
fields in which fields emitted from objects defined as
planar segments9,10 or 3-D distributions of field
strength11 are calculated by methods based on wave
optics. The major advantage of wave-oriented meth-
ods is that they can use a fast Fourier transform
(FFT) for numerical calculations. Therefore the com-
putation time is shorter than for point source meth-
ods, especially in full parallax holograms. However,
the optical reconstruction of accurately rendered 3-D
objects such as a shaded cube, as reported for wave-
oriented methods, was not discussed in the papers
cited above. This is so because of a lack of well-defined
procedures to generate object fields for arbitrarily
shaped surfaces that are diffusive and sometimes
have texture. The technique for shading the recon-
structed object according to such design parameters
as the position of the illumination light and the ratio
of the surrounding light is also important in creating
real 3-D images by wave-oriented methods.

In wave-oriented methods, calculating fields are
commonly based on coordinate transformation in
Fourier space.10,11 A similar method based on the
Rayleigh–Sommerfeld integral has been reported
within the context of free-space beam propagation.12

Recently, the author reported a more precise formu-
lation and numerical consideration13 as an extension
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of an angular spectrum of plane waves14 in which
remapping the angular spectrum plays an important
role. The remapping also eases the difficulty of cre-
ating object fields in wave-oriented methods.

In this paper two techniques for synthesizing object
fields in surface models are presented for creating
3-D images by use of computer-generated holograms.
The first technique, based on the rotational transfor-
mation of wave fields presented in Ref. 13 and on
remapping of the angular spectrum, provides a
method for synthesis of the object fields. This tech-
nique makes it possible to create diffusive fields of
arbitrarily tilted planar surfaces that have an arbi-
trary shape and texture. Furthermore, another tech-
nique is also presented for avoiding unexpected
changes in brightness of the surfaces of objects. The
technique enables us to render surface objects as the
designers intended.

2. Object Model and the Property Function of Surfaces

The coordinate systems and geometry used in this
study are shown in Fig. 1. Objects consist of planar
surfaces that are diffusive and luminous by reflecting
virtual illumination. Each surface has its own two
local coordinates, called tilt and parallel. The tilted
local coordinates defined for the nth planar surface
are denoted rn � �xn, yn, zn�, defined such that the
planar surface is laid on the �xn, yn, 0� plane. A com-
plex function hn�xn, yn� is defined on the plane to give
the nth surface such properties as shape, brightness,
diffusiveness, and texture. Thus these complex func-
tions are referred to as the property functions of the
surface.

Parallel local coordinates r̂n � �x̂n, ŷn, ẑn� are also
defined for each surface. They share their origin with
the tilted coordinates, but the axes are parallel to
those of the global coordinates. In the global coordi-
nates, denoted r � �x̂, ŷ, ẑ�, the hologram is placed on
the �x̂, ŷ, 0� plane. All property functions of surfaces
are defined in the following form:

hn(xn, yn) � an(xn, yn)�(xn, yn)pn(xn, yn), (1)

where an�xn, yn� is a real function that provides am-
plitudes of the property function to keep the shape
and the texture of the nth surface.

If the property function is defined only as the am-
plitude distribution, the surface yields little diffusive-
ness, as shown in Fig. 2(a). For example, an�xn, yn�
in Fig. 1 is a simple rectangular function; i.e., the
amplitude is constant within the rectangular surface.
This situation is similar to the optical diffraction of a
plane wave by a rectangular aperture; therefore, if
the surface is visible to the naked eye, the light has
not been sufficiently diffracted by the aperture. To
give surfaces large diffusiveness, the amplitude func-
tions must be multiplied by a given diffusive phase:

�(xn, yn) � exp[ik�d(xn, yn)], (2)

where �d�xn, yn� is a phase that behaves as a numer-
ical diffuser. Random functions are candidates for the
diffusive phase, but full random functions are not
appropriate to the diffusive phase because the ran-
dom phases are discontinuous and have a large Fou-
rier frequency. Thus the random phases cause
speckles in the reconstruction and problems in nu-
merical calculation. In the research reported in this
paper, a digital diffuser proposed for Fourier holo-
grams15 is used for phase function �d�xn, yn�.

If a property function is given by the product of the
amplitude function and the diffusive phase, the car-
rier frequency of the field on the tilted �xn, yn, 0� plane
is zero. This forces the surface to emit light perpen-
dicularly to the surface, as shown in Fig. 2(b). If the
surface is sufficiently diffusive, a portion of the emit-
ted field may reach the hologram, but high diffusive-
ness results in high computational costs such as the
need for a great number of sampling points. There-
fore the phase of a plane wave propagating perpen-
dicularly to the hologram should be multiplied by the
two factors given above. This plane-wave factor
causes the field to propagate into the hologram, ex-
pressed by

pn(xn, yn) � exp[i(kx, nxn � ky, nyn)], (3)

where kx, n and ky, n are the xn and yn components,
respectively, of the wave vector of the plane wave.

The property function given by hn�xn, yn� is trans-
formed into the complex amplitude ĥn�x̂n, ŷn� in the
parallel coordinates by the method described in Sec-

Fig. 1. Geometry and definitions of global coordinates and tilted
local coordinates defined for a planar surface.

Fig. 2. Fields emitted from surfaces with (a) a constant phase, (b)
a diffusive phase, and (c) a diffusive phase multiplied by the phase
of a plane wave propagating to a hologram.
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tion 5 below. When this transformation is written as

ĥn(x̂n, ŷn) � ��x�y�z
{hn(xn, yn)}, (4)

fields from all surfaces are superimposed upon the
hologram plane as follows:

ĥ(x̂, ŷ) � �
n

�dn
{ĥn(x̂n, ŷn



duced in the tilted coordinates:

u� � u � u0, v� � v � v0. (13)

The spectrum expressed in shifted Fourier space
�u�, v�� is written as

H�(u�, v�) � H(u� � u0, v� � v0). (14)

The spectrum in the parallel coordinates is obtained
by remapping spectrum H��u�, v�� onto Fourier space
�û, v̂� as follows:

Ĥ(û, v̂) � H�(u � u0, v � v0)
� H�(
(û, v̂) � u0, �(û, v̂) � v0), (15)

where the sign for nearly equal means that an inter-
polation is required.

The Fourier spectrum in the shifted Fourier space
is obtained by application of the shift theorem of the
Fourier-transform theory to Eq. (14):

H�(u�, v�) � �{h(x, y)exp[�i2�(u0x � v0y)]}. (16)

The exponential factor in brackets in Eq. (16) is at-
tributed to the carrier frequency observed in the par-
allel coordinates, whereas factor p�x, y� of the
property function was introduced to force the emitted
field toward the hologram, canceling the carrier fre-
quency in the parallel coordinates. In fact, the expo-
nential factors of Eq. (16) and p�x, y� cancel each
other out. Equation (16) is rewritten by substitution
of Eq. (3) as follows:

H�(u�, v�) � �{a(x, y)�(x, y)exp{i[(kx � 2�u0)x
� (ky � 2�v0)y]}}, (17)

where the subscript n is omitted again. The wave
vector of a plane wave propagating along the ẑ axis is
expressed by �0, 0, 2��	� in parallel coordinates.
Thus the plane wave in the tilted coordinates is ob-
tained by coordinates rotation by use of matrix (8) as
follows:

kx � 2�a3�	, ky � 2�a6�	. (18)

The spectrum of relation (15) is rewritten by substi-
tution of Eqs. (18) and (12):

H�(u�, v�) � �{a(x, y)�(x, y)}. (19)

As a result, the factor p�x, y� is no longer required in
the property function if the spectrum is calculated in
shifted Fourier space �u�, v��. Therefore let us rede-
fine the property function as

h(x, y)  a(x, y)�(x, y), (20)

and its spectrum as

H(u, v)  �{h(x, y)}. (21)

Consequently, the rotational transformation is
summarized as follows: First, one obtains spectrum
H�u, v� of the property function of Eq. (20) by fast
Fourier transformation. The center of the spectrum is
placed at the origin in the Fourier space. Next, the
spectrum in the parallel coordinates is obtained by
remapping spectrum H�u, v�, expressed by substitut-
ing Eq. (12) into relation (15) as follows:

Ĥ(û, v̂) � H(
(û, v̂) � 
(0, 0), �(û, v̂) � �(0, 0)).
(22)

Finally, the complex amplitudes of the field are ob-
tained in the parallel coordinates by an inverse Fou-
rier transformation of Eq. (10).

4. Holograms of a Single Surface with Texture

A. Single Axis Rotation

The hologram of a single planar surface with texture
was fabricated for verifying the technique described
in Section 5. The planar surface and the hologram are

Fig. 3. Schematic of rotation upon two axes: (a) a plane rotated
upon the ẑ axis before the x axis and (b) resampling areas of the
Fourier spectrum at several rotation angles in the rotation scheme.
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sampled at intervals of 2 m in the x axis and 4 m
in the y axis. The planar surface has sampling points
of 16,384 � 4096 and a binary texture. Amplitude
distribution a�x, y�



change of brightness of a surface is not perceived
because there is nothing to compare with the single
surface in a piece of hologram. This unexpected and
unwanted change of brightness must be resolved if
one is to shade the object as intended.

A. Theory of Brightness of Reconstructed Surfaces

To compensate for unexpected shading it is necessary
to investigate which parameters govern the bright-
ness of the surface in reconstruction. Figure 8 is a
theoretical model that predicts the brightness of a
surface represented by sampled property function
h�x, y�. Suppose that the amplitude of a property
function of a surface is a constant, i.e., that a�x, y�
 a, and suppose that a2 provides optical intensity on
the surface. In such cases, the radiant flux � of a
small area �A on the surface is given by

� ���
�A

|h(x, y)|2dxdy

� �A�a2, (23)

where � is the surface density of the sampling points.
Assuming that the small area emits light within a
diffusion angle in a direction at �v to the normal
vector, the solid angle corresponding to the diffusion
cone is given as � � A�r2, where A � ��r tan �d�2 is
the section of the diffusion cone at a distance r and �d

is the diffusion angle of light that depends on diffuser
function ��x, y� of Eq. (1).

According to photometry, brightness of the surface,
observed in a direction at an angle �v, is given by

L �
d��d�

cos �v�A. (24)

Assuming that light is diffused almost uniformly, i.e.,
that d��dA � ��A, the brightness is rewritten by
substitution of d� � ���A�dA, d� � dA�r2, and re-
lation (23) into Eq. (24) as follows:

L �
�a2

� tan2 �d cos �v
. (25)

As a result, the brightness of the surface depends
on the surface density of sampling, the diffusiveness
of the diffuser function, and the amplitude of the
surface property function. In addition, the brightness
of the surface is governed by observation angle �v. In
other words, if several surfaces with the same prop-
erty function are reconstructed from a hologram, the
brightness varies according to the direction of the
normal vector of the surface. This phenomenon
causes unexpected shading.

Inasmuch as only a simple theoretical model has
been discussed so far, relation (25) is only partially
appropriate for measuring the brightness of optically
reconstructed surfaces of real holograms. The bright-
ness given in relation (25) diverges in the limit
�v → ��2, but an actual hologram cannot produce in-
finite brightness for its reconstructed surface. Thus
relation (25) is not sufficient to compensate for the
brightness. To avoid the divergence of brightness
in relation (25), one should introduce angle factor
�1 � ����cos �v � �� shown in Fig. 9, instead of
1�cos �v, a priori. This angle factor is unity in �v

� 0 and 1 � 1�� in �v � ��2. Consequently, the
brightness is given as an expression of

L �
�a2

� tan2 �d

(1 � �)
(cos �v � �), (26)

where � is a parameter that plays a role in preventing
the divergence of brightness and in preventing over-
compensation. Because � is dependent on actual
methods for fabricating holograms, such as encoding
the field or the property of recording materials, it
should be determined experimentally.

B. Compensation for Brightness and Shading Objects

The amplitude of a property function that recon-
structs a surface in a given brightness L is obtained
by solution of Eq. (26) for a as follows:

a � 
L� tan2 �d

�

(cos �v � �)
(1 � �) �1�2

. (27)

Fig. 8. Model of brightness of a planar surface expressed by a
property function sampled at an equidistant grid.

Fig. 9. Curves of the angle factor for several values of �.
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However, angle �v is unknown in synthesizing the
object field, and therefore it seems impossible to com-
pensate for the change of brightness. But holograms
are observed in a direction along the ẑ axis, i.e., per-
pendicular to the hologram, because the hologram is
usually observed at a distance of more than several
tens of centimeters. Hence it is possible to approxi-
mate �v by an angle �n formed between the nth sur-
face and the hologram. Objects are shaded by a
method based on Lambert’s law and the diffused re-
flection model. The brightness of the nth surface, of
which the normal vector forms angle �̂n with the vec-
tor of illumination, is given by

Ln � L0(cos �̂n � le), (28)

where le is the ratio of the surrounding light to the
illumination and L0 is brightness in �̂n � 0 and le

� 0. By substitution of Ln of Eq. (28) into L of Eq. (27)
amplitude an of the nth surface is given as follows:

an � a0
(cos �̂n � le)(cos �n � �)
1 � � �1�2

, (29)

a0 
L0� tan2 �d

� �1�2

. (30)

Here, observation angle �v is replaced by the angle of
the normal vector, �n.

6. Optical Reconstruction of Three-Dimensional
Objects

First, I fabricated several holograms of the same hex-
agonal prism with which to determine the value of
parameter �. Figure 10 shows the optical reconstruc-
tion of three holograms. The reconstructed image of
the hologram without compensation for brightness is
shown in Fig. 10(a). The left-hand surface of the hex-
agonal prism, which has the largest angle �n, is the
brightest of the object surfaces. As shown in Fig.
10(b), the hologram with compensation in � � 0 is
contrasted to that in Fig. 10(a). Here, remember that
compensation in � � 0 leads to unlimited compensa-
tion. Therefore the surface that forms a large angle
with the hologram is dark as a result of overcompen-
sation. Figure 10(c) is also applicable to a hexagonal
prism whose brightness is compensated for by
� � 0.5. Differences of brightness disappear by proper
compensation for brightness, which dissolves borders
between surfaces.

Figure 11 shows optical reconstruction of 3-D ob-
jects whose brightness is completely compensated for
at � � 0.5. In addition, the surfaces are shaded; the
amplitudes of the surfaces are determined by use of
Eq. (29) in given virtual illumination and surround-
ing light. Arrows and numbers in Fig. 11 indicate

Fig. 10. Optical reconstructions of unshaded hexagonal prisms (a) without brightness compensation and (b), (c) with compensation in
� � 0, 0.5, respectively.

Fig. 11. Optical reconstructions of 3-D objects shaded with illumination light. Cubes are illuminated from the upper right in
(a) le � 0 and from the upper left in (b) le � 0.7; a hexagonal prism �le � 0.5� is shown in (c). Brightnesses of objects are all compensated
for at � � 0.5. Arrows and numbers in parentheses define the illumination vector in global coordinates.
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illumination vectors in global coordinates. As ex-
pected from the vectors, object surfaces are shaded in
the reconstructions.

7. Discussion

The computation time in the proposed techniques is
given by rotational transformation of the surfaces of
the object. According to Ref. 13, the computation time
of rotational transformation is dominated by FFTs,
and FFT operation must be executed twice to rotate a
planar surface. However, most of the inverse FFTs of
Eq. (10) can be omitted from calculating the total
field; just an inverse FFT operation is necessary to
create a hologram because the translational propa-
gation of the field �d� � can be carried out in Fourier
space. In the synthesis of holograms described in pre-
vious sections, the method of the angular spectrum of
plane waves14 is used for the operation of the propa-
gation. Therefore the total field of Eq. (5) on the ho-
logram is expressed by

ĥ(x̂, ŷ) � ��1��n Ĥn(ûn, v̂n)exp[i2�ŵ(ûn, v̂n)dn]�,
(31)

where dn is the distance between the �x̂n, ŷn, 0� plane
of the parallel coordinates and the hologram. Thus
the number of times a FFT is executed is N � 1, to
calculate the total field of an object composed of N
pieces of planar surface. As a result, one FFT�surface
is approximately estimated as the computational cost
in the proposed techniques.

8. Conclusion

Full parallax computer-generated holograms of
three-dimensional surface objects were synthesized
by use of a wave-optical method. In this method, an
object is composed of some planar surfaces, and a
complex function defined for each surface retains
such properties as shape, texture, and brightness.
The fields emitted from the tilted surfaces are calcu-
lated by use of the rotational transformation of the
property function and totaled on the hologram.

When surfaces build an object, the change of
brightness that depends on the angle of view causes
unexpected shading of the surface. A theoretical
model with which to predict the brightness of the
reconstructed surface and prevent unexpected shad-
ing has been proposed. This technique allows the
object to be shaded as one intends. Finally, optical
reconstructions of holograms synthesized by use of
the proposed techniques have been demonstrated to
verify the validity of the methods.

This study is partly supported by the Kansai Uni-
versity High Technology Research Center and in
part by Kansai University research grants, includ-
ing a grant-in-aid for encouragement of scientists,
in 2003.

References
1. J. P. Waters, “Holographic image synthesis utilizing theoreti-

cal methods,” Appl. Phys. Lett. 9, 405–407 (1966).
2. A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated

holograms: a simplified ray-tracing approach,” Comput. Phys.
6, 389–392 (1992).

3. M. Lucente, “Interactive computation of holograms using a
look-up table,” J. Electron. Imag. 2, 28–34 (1993).

4. J. L. Juárez-Pérez, A. Olivares-Pérez, and R. Berriel-Valdos,
“Nonredundant calculation for creating digital Fresnel holo-
grams,” Appl. Opt. 36, 7437–7443 (1997).

5. H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of
Fresnel holograms employing difference,” in Practical Holog-
raphy XIV and Holographic Materials VI, S. A. Benton, S. H.
Stevenson, and J. T. Trout, eds., Proc. SPIE 3956, 48–55
(2000).

6. K. Matsushima and M. Takai, “Recurrence formulas for fast
creation of synthetic three-dimensional holograms,” Appl. Opt.
39, 6587–6594 (2000).

7. A. Ritter, J. Böttger, O. Deussen, M. König, and T. Strothotte,
“Hardware-based rendering of full-parallax synthetic holo-
grams,” Appl. Opt. 38, 1364–1369 (1999).

8. T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe, and T.
Kunugi, “Special purpose computer for holography HORN-2,”
Comput. Phys. Commun. 93, 13–20 (1996).

9. D. Leseberg and C. Frère, “Computer-generated holograms of
3-D objects composed of tilted planar segments,” Appl. Opt. 27,
3020–3024 (1988).

10. T. Tommasi and B. Bianco, “Computer-generated holograms of
tilted planes by a spatial frequency approach,” J. Opt. Soc. Am.
A 10, 299–305 (1993).

11. D. Leseberg, “Computer-generated three-dimensional image
holograms,” Appl. Opt. 31, 223–229 (1992).

12. N. Delen and B. Hooker, “Free-space beam propagation be-
tween arbitrarily oriented planes based on full diffraction the-
ory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15,
857–867 (1998).

13. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calcu-
lation method for optical diffraction on tilted planes by use of
the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20,
1755–1762 (2003).

14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed.
(McGraw-Hill, 1996), Chap. 3.10.

15. R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in dig-
ital holography,” J. Opt. Soc. Am. A 8, 572–578 (1991).

16. K. Matsushima and A. Kondoh, “Wave optical algorithm for
creating digitally synthetic holograms of three-dimensional
surface objects,” in Practical Holography XVII and Holo-
graphic Materials IX, T. H. Jeong and S. H. Stevenson, eds.,
Proc. SPIE 5005, 190–197 (2003).

17. K. Matsushima and A. Joko, “A high-resolution printer for
fabricating computer-generated display holograms (in Japa-
nese),” J. Inst. Image Inf. Television Eng. 56, 1989–1994
(2002).

4614 APPLIED OPTICS � Vol. 44, No. 22 � 1 August 2005


