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Large-scale separable nonlinear integer programming problems with multiple constraints can be solved op-

timally by using the improved surrogate constraints (ISC) method. We propose a successive optimization 

solver based on the ISC method to solve a series of non-separable and non-convex optimization problems.  

The successive optimization solver is applied to the index-tracking optimization problem for two variants 

of the index-plus-alpha-funds model. In this model the fund tracks a market benchmark and outperforms it 

by a small amount, alpha. The first index fund model is optimized by explicitly restricting the number of 

stocks while in the second model the number of stocks is implicitly determined by incorporating execution 

costs and trading units into the optimization process. The models are applied to the Tokyo Stock Market 

where high quality portfolios were found for the Japanese 225 NIKKEI stocks and 1440 TOPIX stocks. 
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1.  Introduction 

In this paper we propose a successive discrete optimization method, which may be considered as an 

extension of successive linearization methods, for solving non-convex financial optimization problems 

with discrete variables. The main difference between the existing successive linearization method and the 

present method is what terms will be linearized. The existing successive linearization methods use 

linearization techniques for all nonlinear terms, but the present method only for nonseparable terms in all 

nonlinear terms.  Therefore the present method doesn't easily receive the influence of the error caused by 

the linear approximation. Indeed we can use whole feasible region as the initial search region, but the 

other linearization methods need to use small regions (step bounds or trust region) for variables,  The 

method presented is very powerful and can even solve non-convex portfolio optimization problems, 

which existing nonlinear solvers are unable to solve. The method applies to producing portfolios that not 

only track a market benchmark but also produce a return higher than the benchmark, i.e. a  plus-alpha 

profit, under non-convex transaction cost constraint. A plus-alpha fund may enable a trust to lower or 

remove trust fee charged for managing the fund. Trust fees are relatively small amounts, but in total the 

cost can be high for a long term fund such as pension fund.  

Successive Linear Programming (Griffith and Stewart. 1961, Palacios-Gomez et al. 1982, and Zhang 

et al. 1985) solves nonlinear optimization problems via a sequence of linear programs. Kanzow et al. 

(2005) present a successive linearization method with a trust region-type globalization for the solution of 

nonlinear semidefinite programs. The present interactive method solves nonconvex optimization 

problems via a sequence of the nonlinear knapsack problems and only uses linearization techniques for 

nonseparable terms.  

This paper deals specifically with the index tracking optimization problem, which is a variant of the 

Markowitz (1952) mean-variance model, and although half a century has already passed, the model is still 

used  in many industries and it remains a very important theoretical model.  The index fund problem, 

which optimizes a portfolio in order to track a market index, is a descendant of the Markowitz model. The 



3 
Author: Y. Nakagawa, R. J.W. James, C. Rego, F. Glover 

Kansai University Repository, Oct. 2010 

 

  

index fund is popular in the passive investments like the pension fund. The pension fund is a set of 

common assets (often stocks) pooled to generate stable growth over the long term with the aim of 

providing pensions for employees when they retire. Some employees receive their pensions after 

contributing for 40 years, but the money paid 40 years ago and invested to the stock market has reduced 

by up to 40% due to trust fees. The trust fees in Japan are 0.5-1.2% per year for index tracking funds. The 

trust fees of enhanced index tracking funds are much higher. Plus-alpha funds may enable the trust to 

return invested money without incurring trust fees or even providing an additional return on the money. 

The risk of the proposed plus-alpha fund appears to be almost the same as an index- tracking fund with a 

cardinality constraint. 

In real life passive investment management applications, the following requirements need to be tak-

en into consideration (Perold 1984, Edirisinghe, Naik, and Uppal. 1993): 

1)  Restrictions on the trading unit for stocks: Often there is a minimum quantity (lot) for trading on the 

market. This means the portfolio weights can be modeled with discrete values. 

2)  Transaction Costs:  The transaction cost is the difference between the execution price and the true val-

ue of the stock. It includes explicit costs (e.g. commissions and taxes) and the market impact cost 

which is dependent on market liquidity and how the stock price changes with the transaction. These 

costs are generally separable nonlinear non-convex functions of the portfolio weights. 

Although these requirements are crucial for the effective optimization of index funds, their consider-

ation requires the solution of non-separable non-convex discrete optimization problems that are very dif-

ficult to solve. To overcome these difficulties, optimization models proposed to date have focused on dif-

ferent types of linearization techniques to reduce the problem complexity.  

Index fund problems are generally modeled as a mixed integer program with a nonlinear objective 

function. The standard deviation is usually taken into the objective function as the measure of risk, fol-

lowing the pioneering work of Markowitz (1952). These problems are usually very difficult to solve ex-
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actly, even for a relatively small number of stocks (Gaivoronski et al. 2004). In order to reduce the com-

plexity of the problem, Konno and Yamazaki (1991) use an absolute deviation (a linear function) instead 

of the standard deviation (a quadratic function) for the calculation of the tracking error of the portfolio. 

Due to the difficulty of the problem, approximation algorithms, e.g., reoptimization heuristic , genetic 

algorithms, simulated annealing, and tabu search algorithms Chang  et a. 2000, Jobst et al. 2001), are 

usually required to find high quality solutions, however these are not necessarily optimal. Tabata and Ta-

keda (1995) formulate this problem as a multi-objective 0-1 quadratic programming problem that simul-

taneously minimizes the number of stocks and the expected value of the squared difference between the 

return on the tracking portfolio and the return on a benchmark index.  More advanced heuristic methods 

rely on a number of metaheuristic strategies (. For a discussion and a computational study of these ap-

proaches we refer the reader to Chang et al. (2000). More recently, Gaivoronski et al. (2004) implemented 

the following two stage procedure based on ideas originally proposed in Jobst et al. (2001): 

1)  Compute weights of current stocks by solving the portfolio selection problem without any restriction 

on the number of different stocks. Rank the stocks in descending order of their weight.  

2)  Select a subset of the highest ranked stocks in the current portfolio to create a reduced portfolio se-

lection problem. Repeat steps 1 and 2 until the number of required stocks is reached. 

Jobst et al. (2001) called this approach the “reoptimization heuristic”. Their computational results 

showed that the reoptimization heuristic is preferable to applying  meta-heuristic methods to this problem.  

Reoptimization heuristics can produce high quality solutions for index tracking optimization models with  

cardinality constraints, but the effectiveness of the heuristic depends on the software used to solve the 

portfolio selection instances without any limitation on the number of different stocks. 

Konno and Hatagi (2005) use branch and bound to construct an index-plus-alpha portfolio with con-

cave transaction costs based on historical data of the stocks in the market.  Like Konno and Yamazaki 

(1991), they use absolute deviation to assess the tracking error of the portfolio which they minimize by 

using a branch and bound algorithm.   
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The surrogate constraints approach was first proposed by Glover (1965) to solve 0-1 Integer Pro-

grams. The approach breaks the original multi-constraint problem into a series of surrogate problems with 

a single constraint. The problem with surrogate constraint methods, however, is that they may fail to pro-

duce an exact optimal solution of the original problem due to the existence of a surrogate duality gap 

(Nakagawa and Miyazaki 1981). To overcome this, Nakagawa (1998, 2003) proposed the improved sur-

rogate constraints (ISC) method for solving multidimensional nonlinear knapsack problems (MNK).  In 

order to close the surrogate duality gap, the ISC method enumerates all solutions within a target region 

which is known to include the exact optimal solution. The ISC method has proven to be very effective at 

solving large instances from the standard MNK benchmarks as well as instances arising in classical relia-

bility problems (Ohnishi et al.  2007). However, the preceding ISC method does not handle nonseparable 

objective functions.  In our earlier work dealing with separable reliability optimization problems (Hikita 

et al. 1992), we converted non-separable functions into the separable functions using a first order approx-

imation.  Such nonseparability arises, for instance, in models for financial optimization problems, for ex-

ample the index tracking problem under cardinality constraints and/or transaction cost. The index tracking 

problem is important as an investment product for pension plans, since pension funds are more commonly 

passively managed to generate stable growth over the long term (Beasley, Meade, Chang 2003 and Gai-

voronski, Krylov, van der Wijst, 2005). 

In order to solve non-separable non-convex discrete optimization problems, this paper proposes a  

successive discrete optimization technique, called the “CubeWalk”. It is similar to successive linear pro-

gramming in that an area around a given starting point is evaluated with an approximation and a new 

point is selected from this area and this becomes the new starting point for the next iteration.  However 

the method of approximation and optimization technique used in CubeWalk is very different to those pro-

posed in the successive linear programming literature. CubeWalk is applied to non-convex quadratic dis-

crete optimization models, for example index tracking optimization models with a cardinality constraint, 

i.e. a limit on the number of stocks allowed into the portfolio, while also considering trading units and 
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transaction costs. For index tracking optimization models that consider trading units and transaction cost, 

the trading unit is the minimum quantity for trading on the markets, for example one lot is 1000 shares. 

For transaction costs, we use a commission table from a Japanese security company and the execution 

costs are randomly generated.  

This paper extends the work of Konno and Hatagi (2005) by developing index-plus-alpha portfolios 

based on historical stock data but, unlike Konno and Hatagi (2005), the historical data is used to create a 

pseudo trajectory to choose stocks that are improving over time, rather than the stocks that have had little 

growth.  Also unlike Konno and Hatagi (2005) we also take into account trading unit size.  The technique 

we propose can converge to the exact optimal of the index-tracking problem with a nonconvex transaction 

cost constraint and minimum trade size restrictions. The models were tested using data from the Tokyo 

Stock Market and using the 225 NIKKEI and 1440 TOPIX stocks over the period April 1994 - March 

1999. 

The paper is organized as follows. In Section 2, we discuss non-convex discrete optimization prob-

lems and present a new method for solving these problems which we call CubeWalk. In Section 3, we 

discuss the index fund problem with a cardinality constraint and two types of rates-of-return. Additionally 

we consider creating Index-Plus-Alpha portfolios, although we do not explicitly consider Index-tracking 

portfolios, which are a special case of the Index-Plus-Alpha portfolio. In Section 4, we describe the In-

dex-Plus-Alpha Fund considering the trading units and transaction cost. Some example problems are 

solved. Finally, in Section 5, we conclude and summarize the material presented 

2.  Index Fund Problems  

2.1 Index Fund Portfolios with a constraint limiting the number of stocks 

Let 0R be a random variable of the rate of return of the target index (e.g., NIKKEI 225) to be tracked, 

iR be the return of a stock  ni ,,2,1   and R  be the random variable of the return of the portfolio 

obtained, i.e.  


n

i iiRR
1

  where i   is the weight of stock i.   The problem is formulated as: 
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where E[• ] represents the expected value of the random variable • , i is the mean rate of return for 

stock i, i.e. μi =E[Ri ], ζis is covariance between stocks i and s, i.e. ζis=E[( Ri - μi)( Rs - μs)]. μ0=E[R0], and 
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The objective function, i.e. the active risk, is also defined as: 
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where  V  means the variance of  . This active risk includes not only the variance error but also the 

mean error of returns. 
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Note that any slack remaining in the ε can always be eliminated by normalizing the weights of the 

stocks, forcing 
1

n

i

i




 to be equal to 1.  Also any slack remaining in δ can be resolved by removing the 

stocks with the smallest weight and then normalizing the weights.  Also note that in practice δ is limited 

to between 0% - 10% of the value of q. 

We define the rate of return iR for each stock  ni ,,2,1,0  . Note that stock i = 0 means the mar-

ket index that the portfolio should track. Let Ct be the time of  investment, i.e. the time that the stock was 

purchased. The stock prices of the interval  Ctt ,,1,0   can be used for optimizing the portfolio.  The 

rate of return that we consider is based on a periodical return rate (%) for each stock  ni ,,2,1,0  .  

This is used by Tabata and Takeda (1995) and is normally used by Securities companies and most of the 

literature, and is defined as: 

    , 1

, 1

100 ( 0,1,2 , , 2, , , 1, )
it i t

it C C

i t

v v
R i n t t t

v





 
      

 
, 

 where itv is the price of stock i at time t . 

3. 2. Index-Plus-Alpha Portfolios with Cardinality Constraint 

In this section we formulate an Index-Plus-Alpha portfolio, which is a generalization of the Index-

tracking portfolio.   The pseudo trajectory can be created in a number of different ways, depending on the 

type of portfolio that is wanted.  The simplest form is a level pseudo trajectory  
PseR whereby 

 0

PseR R    , 

where 0R is the periodical return rate of the market index. This provides our basic plus alpha portfo-

lio.  However a potentially more useful pseudo trajectory is to consider those shares that have been in-

creasing in value over the time period we have historical data and converges to the index.  We call this an 

up-trend pseudo trajectory with a β % difference, whereby the β is the amount the portfolio converges to 

the index per month.  The pseudo trajectory is therefore defined as: 
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The trajectory 
PseR is the past returns of stock based on the specific time Ct that the plus-alpha portfolio is 

purchased. which we are wanting to track and includes an extra amount of return, or alpha level, based on 

the stock price.  RF is the return on the stocks based on the stock price, that is
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Essentially the formulation is the same as the Index tracking portfolio except that the objective is re-

defined as: 

B 2P : Minimize ( ) [( ) ]Psd FS E R R ξ  

where 
1

nF F

i ii
R R 


 . 

Using the stock prices for the returns in the optimization provides good tracking in the price trajecto-

ry, as we see in our computational results.    

Clearly down-trend pseudo trajectories are not desirable to model in this way as in these cases de-

viating from the index in order to maintain stock value is desirable. 

When we evaluate the index-plus-alpha portfolio, we calculate the variance based on the periodical 

return rate, that is: 

e  0[ ]V R R  
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3.3  Index-Plus-Alpha Portfolio with Trading Units and Transaction Cost 

The present index fund problem is formulated as a nonconvex discrete programming problem 

with a non-smooth constraint function. Considering the trading unit i  for each stock  ni ,,2,1  , the 

problem is formulated as: 

B 2P : Minimize ( ) [( ) ]Pse FS E R R ξ  

 


n

i

i

1

1tosubject  

,)(
1

Ch
n

i

ii  


 

  ),,2,1(,,,3,2,,0 nia iiiiii     

Where ε is the maximum error allowed in the total weight of the portfolio (buying the exact portfolio 

can be impossible due to having to buy in trading unit lots), C  is the total investment, θ is the maximum 

transaction cost allowed as a proportion of the total investment C,  and )( iii kh   is the execution cost 

associated with the investment iik  ),,2,1,,,1,0( niak ii   .  

 

3.  CubeWalk Method for Non-convex Discrete Optimization Problem 

Consider the following non-separable nonconvex optimization problem: 

 P：
1

maximize ( ) ( ) ( )
n

i i

i

f r f 
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 ξ ξ   

 

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where the variables ),,,( 21 n ξ , the number of constraints },,2,1{ mM  , the number of 

variables },,2,1{ nN  , the function )(ξr  may be a differentiable non-separable function, and the 

functions ),()(,)( MjNigf ijiii   are separable and are not assumed to be differentiable. It should 
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be noted that we do not assume convexity for this problem. In order to apply the ISC method to this non-

separable problem, we consider a separable problem with a hyper-cube region in the neighborhood of 

each current solution (or pivot). Let 
)(ξ  ),2,1,0(    denote the pivots and   ( max U L

i i
i N

  


   )  

be the size of the sides of the cube. We introduce the discrete variable }1,,2,1{  dxi   to divide the 

neighborhood 
( ) 0.5i i     ( )i N of the pivot 

)(ξ  into d  segments. ),,()( dxiii   
, 

  5.0/)1(),,(  dxdx ii . 

The cube optimization problem in the neighborhood of the pivot 
)(ξ  is as follows: 

 ),,P( )( dξ : ),,()()( maximize
1

)()()( dxfrf i

n

i

i 


 
ξx  

      
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
n

i

jijij Mjbdxgg
1

)()( )(),,()(tosubject 
x  

                      )(),,()( Nidx U

iii

L

i   
, 

                      )(}1,,2,1{ Nidxi   , 

where ),,(/)(),,( )()( dxrdxf iiii   
ξ )),,(( )( dxf iii   

, ),,()( dxg iji 

)(( 
ijig  )),,( dxi  , and ),,,( 21 nxxx x . The problem ),,P( )( dξ  is a separable discrete 

optimization problem that can be formulated as a nonlinear knapsack problem that can be solved exactly 

and efficiently (Nakagawa, 2003). The accuracy of this approach will depend on the size of ),,( dxi  .  

As ),,( dxi  → 0, ),,P( )( dξ → the local optimum.  The interactive optimization procedure for 

solving the original problem P is outlined in Figure 1. We assume that an experienced operator is interact-

ing with this algorithm. 
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Figure 1: Interactive CubeWalk Procedure 

Input: the original problem P , initial solution 
)0(ξ , allowable error  ; 

1. Set 0 ; 

2. Repeat 

3.  Set 1  ; 

4.   Determine the cube size  and the number of divisions d  by using the empirical knowledge 

of the operater; 

5.  Consider a problem ),,P( )1( dξ  corresponding to 
)1( ξ  and yield an optimal solution 

)(x  by using the and appropriate solver, in this case the ISC Solver ; 

6.  Set ),,( )()1()( dxiii    
 ),,2,1( ni  ; 

7. Until(  and
( )( )f ξ  are small enough) 

8. Output the current solution 
)(  as the optimal solution of P; 

 

The size of   and the number of divisions d on line 4 are determined by the operator through their 

experience and the history of previous solutions.  They also determine whether the procedure is to termi-

nate on line 7. 

The empirical knowledge used in the Cube Walk is as follows: 

1) When the current solution
( 1)

ξ does not improve the objective function value
( 1)( )f 

ξ , the cube 

size   is made smaller. 

2) When the improvement
( 1) ( 2)( ) ( )f f ξ ξ becomes very small continuously several times, 

the cube size  is enlarged a little. 

3) In order to speed up the algorithm, the cube size  is enlarged a little  after around 10 times with 

the same size. 

 

 

Figure 2: CubeWalk 
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2.2 Interaction Guidelines 

The Algorithm in Figure 1 requires the operator to choose the size of the cube,  , and the number of 

divisions, d.  These two parameters will determine the diversification (how widely the search looks) and 

intensification (how carefully the search looks around the current solution) of the search.  The choice of d 

will also dictate the computational time that is required at each iteration, the larger the number of divi-

sions, the more CPU intensive the search will be. 

In our experiments we have found that a good approach is to start with a small  , in order to intensi-

fy the search around the initial solution, then after 10 iterations or if the improvements in the solution 

quality are small, increase 
 
in order to diversify the search and enable it to get out of local minima for a 

small number of iterations, then once again make  small and repeat the process.  In or experiments we 

kept d as a constant. Its value would be dictated to by the efficiency of the solver being used.  In the case 

of the ISC solver, discussed below, we set d to 100. 

 

The performance of the solver used directly influences the performance of the Cube Walk and dic-

tates the number of divisions that can be practically solved at each iteration.  

The improved surrogate constraints method was proposed by Nakagawa (1998, 2003) and can be used 

for solving separable nonlinear integer programming problems with multiple constraints. This approach, 
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like the standard surrogate constraints methods (Glover 1968), solves a succession of surrogate con-

straints problems that have a single constraint rather than the original multiple constraint problem. The 

constraints are combined using a surrogate multiplier vector which, if optimal, will solve the original 

problem exactly if there is no duality gap, however duality gaps are common and therefore the optial solu-

tion is not found. .  The improved surrogate constraint (ISC) method closes the surrogate duality gap by 

enumerating solutions that are at least as good as a particular target objective value while still meeting all 

of the original constraints. The target is obtained through the use of a heuristic.  As the value of the target 

is improved, the duality gap is reduced and the optimal solution can eventually be found.  

In the literature the ISC method has been used to solve both linear and nonlinear problems.  Nakaga-

wa, James, Rego, (2007) report computational results on 0-1 Knapsack problems found that even though 

the performance of the ISC is not as competitive as CPLEX for 10 constraint instances,  The ISC is very 

efficient for solving problems with 5 or less constraints.   Nakagawa et al. (2007)  compared global opti-

mization solvers such as Bonmin (Bonami and Lee 2006, Bonami et al., 2005), Baron (Sahinidis and Ta-

warmalani 2005, Tawarmalani and Sahinidis, 2004), Interval Global solver in Frontline Premium Solver 

Platform (2005), and for convex quadratic knapsack instances, the CPLEX quadratic solver and 

LP/Quadratic solver in Frontline Premium Solver Platform were compared. In all cases the ISC per-

formed very well and solved many problems that were unable to be solved using the other solvers.  The 

ISC has also outperformed many heuristic techniques when solving Non-Convex Separable Integer Pro-

gramming problems (Ohnishi et al. 2007).  The ISC has also been used successfully as a heuristic to solve 

0-1 knapsack instances (Nakagawa et al. 2005b) outperforming many of the metaheuristic approaches 

proposed in the literature, for example Vasques and Hao (2001), Chu and Beasley (1998) and Vesquez 

and Vimont (2005). 

The termination criteria of the CubeWalk procedure in Figure 1 requires both the size of the cube, 

 ,  and the amount of improvement in the objective function, )( )(ξf , to be “small”.  This again is de-

termined by the operator.  We require the cube size to be small because if the cube size is large, then we 
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are in a very diverse phase of the search and therefore the objective may not improve.  If however we 

have a small cube size then we in an intensification phase of the search and we should be able to find im-

proved solutions, if they are present.  Also we need to consider the amount of the improvement, if signifi-

cant gains in the objective function are still being made, then we would not want to terminate the search 

however, if  little or no gains are getting made then the search should terminate.  What is considered to be 

“large” and “small” is problem dependent and needs to be determined by the operator of the procedure. 

4. Computational Experiments 

The performance of the Cube Walk will now be evaluated on various index fund problems. We use 

the expected value of the squared difference between the return on the tracking portfolio and the return on 

a benchmark index, see Tabata and Takeda (1995), as the means of evaluating how well the the portfolio 

matches the historic index data .  

4.1 Index-plus alpha fund problems with cardinality constraints 

In this section, we present computational results for solving PA using the Reoptimization Heuristic 

with the Generalized Reduced Gradient solver (RH(GRG)) (Jobst et al., 2001) and also a hybrid of the 

GRG and CubeWalk (GRG&CubeWalk) solver which was developed to improve the overall speed of the 

CubeWalk procedure. The hybrid GRG&CubeWalk solver uses GRG to solve the problem to a local mi-

nima and then uses CubeWalk to diversify the search away from that local minima.  GRG is then used to 

find another local minima.  The process is repeated until CubeWalk cannot find a better solution than the 

local minima obtained by GRG. The Frontline Systems Premium Solver Version 6.5, GRG solver is used. 

To test the solvers, data from the Nikkei 225 (Japan), and was used in Beasley, Meade, and Chang (2003) 

(available from OR-Library http://people.brunel.ac.uk/~mastjjb/jeb/info.html). The data set includes all 

weekly prices from March 1992 to September 1997 and includes 225 stocks . The index and index-plus-

alpha problems were solved with 41 weeks of tracking data and the portfolios were restricted to 50 stocks. 

Four different problems were created by using different intervals within the available data set, that is 40th 

(0-40), 80th (40-80), 120th (80-120), 160th (120-160) weeks. Table 1 shows the computational results for 
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the index fund problem, where the objective function uses fixed returns as explained previously. The 

RH(GRG) solver uses 7 iterations (reducing stocks from 225, 170, 130, 100, 80, 60, and 50 stocks) for 

each instance. The RH(GRG)&CubeWalk produces solutions that are on average 96.9% better than 

RH(GRG).  The time required to run  each trial of the CubeWalk procedure takes several minutes, de-

pending on the problem. .  

Table 1. Reoptimization Heuristic using GRG and The RH(GRG) and CubeWalk Hybrid. 

Method 
Period 

(weeks) 

40
th

 week 

0-40 

80
th

 week 

40-80 

120
th

 week 

80-120 

160
th

 week 

120-160 

RH(GRG) 
Objective function value 

No. of Stocks 

1.42E-4 

50 

1.37E-4 

50 

4.66E-5 

49 

7.61E-4 

50 

RH(GRG)&CubeWalk 

Objective function value 

No. CubeWalk trials 

No. of Stocks 

1.39E-9 

4 

50 

1.52E-9 

2 

50 

1.03E-9 

4 

50 

3.47E-5 

4 

50 

 

Table 2 shows the computational result for the index tracking problems with 0.2% plus-alpha profit 

every week and without restricting the number of stocks. This plus alpha value provides a very difficult 

problem for GRG to solve.  The RH(GRG) fails to produce an improved solution for of the  120th and 

160th week problems. The GRG with a starting solution from CubeWalk works very well for plus-alpha 

index tracking problems. 

 

Table 2: Computational results for the RH(GRG) solving index tracking problem with  

0.2% plus-alpha weekly profit. 

Initial sol.  40th week 80th week 120th week 160th week 

   0 - 40 40 - 80 80 - 120 120 – 160 

All 0.0001 Objective function value 0.0863  0.0898  14.9634  4.1244  

 No. of stocks1 27, 56, 98 16, 84, 181 - - 

All 1/225 Objective function value 0.0250  0.0751  14.9685  4.1181  

 No. of stocks 32, 52, 85 16, 83, 182 - - 

Solution by  Objective function value 0.0184  0.0250  0.0140  0.0002  

CubeWalk No. of stocks 29, 60, 110 33, 57, 108 37, 54, 106 39, 70, 100 
1The numbers are the number of stocks whose weights are larger than 0.01, 0.005 and 0.0001 respectively 
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To evaluate the CPU time for problem sizes, the CubeWalk is applied to a problem with a 1.0 % up-

trend trajectory of the TOPIX 1440 stocks for 24 months. The 50 stock portfolio obtained (Portfolio 4) is 

illustrated in Figure 6. The tracking error of the portfolio is 0.012% and sum of weights is just 1.0. A per-

sonal computer (Pentium IV with a 3.2GHz processor and 1GB of memory) was used for these experi-

ments. Using this computer the problem took several days to solve. Each cube problem can be solved in a 

few minutes but the convergence of the CubeWalk becomes very slow once the active risk reduces to ap-

proximately 1%. A solution with an active risk of 1% is obtainable within 1 hour. 

 

Figure 6: An index-plus-alpha portfolio for TOPIX 

 

 

 

4.2 Index-Plus-Alpha Fund Considering Trading Units and Transaction Cost 

The CubeWalk is applied to monthly data (stock price on the last day of the month) from the 

Tokyo stock market (NIKKEI 225) from April 1994 to March 1996. The trading unit size is assumed to 

be 1000 stocks. 

The first experiment treats the case that only the commission is considered as a transaction cost. 

The commission used is outlined in Table 3, and was supplied by a securities company in Japan. 
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Table 3: Commission. 

Amount of Transaction Commission  

a (million yen) (million yen) 

~ 0.5 0.0140a 

0.5 ~ 0.7 0.0110a + 0.0015 

0.7 ~ 1 0.0090a + 0.0029 

1 ~ 3 0.0085a + 0.0034 

3 ~ 5 0.0080a + 0.0049 

5 ~ 10 0.0068a + 0.0109 

10 ~ 30 0.0055a + 0.0239 

30 ~ 50 0.0025a + 0.1139 

50 ~  0.0010a + 0.1889 

 

Computational results are summarized in Table 4 and Figure 7. Portfolio 5 provides a pseudo in-

dex without transaction cost or trading unit limitations.  It is used as initial pivot solution for the cube 

walk and is also used as the first order approximation of ),,()( dxf ii 
.  This is then used to  generate the 

discrete portfolios 7-16 with trading unit limitations and different transaction cost rates. Portfolio 5 takes 

tens of minutes of CPU time to compute. Portfolios 7-16 are obtained in about ten seconds for generating 

each porfolio The portfolios are exact optimal solutions except for the precision lost through the size of 

the grid used. The total investment is 100 Million Yen. The maximum transaction cost rate ranges from 

= 0.95, 0.96, …, 1.05, as shown in Table 4. The larger the maximum rate   we use, the more stocks that 

are included in the portfolio. From the viewpoint of having a more diversified investment, the portfolio 

obtained improves with more stocks. The active risk (the objective function) of the discrete portfolio 

changes from 0.0712% to 2.7597%, but the monthly tracking errors before the purchase are more stable, 

for example from 0.6031% to 0.8864%. The out of sample tracking errors are less than two times the er-

ror before the purchase. The maximum and average of ex-post returns vary from 8.94 to15.93% and from 

3.97 to 9.17%, respectively. Figure 8 illustrates Portfolio 8 as an example. The actual discrete weights of 

portfolios are shown in Table 5. 
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Table 4: Discrete portfolios with commission. 

Portfolio Max. rate Trans. cost Tracking error Sum of  Variance (%) No. of  Relative difference1 (%) 

no.  θ (%) (%) (Objective value %) weights Before Ex-post stocks Maximum Mean 

5   1.08445 0.0009  1.00000  0.0069  0.8954  85 7.44  3.56  

6 0.95  0.9494  2.7597  1.00010  0.3698  2.6452  34 15.93  9.17  

7 0.96  0.9600  2.2636  1.00006  0.1836  1.8933  37 11.60  6.59  

8 0.97  0.9698  0.8483  1.00012  0.1782  2.0025  39 13.00  7.28  

9 0.98  0.9793  0.7673  1.00001  0.0939  1.3567  41 9.17  4.23  

10 0.99  0.9899  0.6897  1.00006  0.0899  1.3149  43 8.94  3.97  

11 1.00  0.9999  0.1975  1.00007  0.1251  1.5486  46 10.80  5.07  

12 1.01  1.0100  0.0712  1.00005  0.0627  1.3898  49 10.18  4.98  

13 1.02  1.0198  0.1118  1.00001  0.0708  1.1189  52 9.09  4.58  

14 1.03  1.0300  0.2742  1.00010  0.0910  1.1800  55 10.21  5.17  

15 1.04  1.0397  0.4658  1.00100  0.0959  1.4626  58 11.93  6.38  

16 1.05  1.0484  0.3823  1.00000  0.0659  1.2720  62 10.42  5.53  
1
Relative difference between out-of-sample return and the index as a percentage of the initial investment 

 

Figure 7: Discrete portfolios and NIKKEI225 (5 years). 
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Figure 8: Index-Plus-Alpha Tracking Portfolio 8 (24 month data used). 

 

60 

65 

70 

75 

80 

85 

90 

95 

100 

105 

110 

Price Trajectories of Portfolio 8 and NIKKEI225（5 years）
Portfolio 8 NIKKEI225 Pseudo Traj.

the  purchase month of portfolioM
illio

n
 Y

en

A

-15 

-10 

-5 

0 

5 

10 

15 

20 

Monthly Return Trajectories of Portfolio 8 and NIKKEI225（5 years）

Portfolio 8 NIKKEI225 Diff

%
B



21 
Author: Y. Nakagawa, R. J.W. James, C. Rego, F. Glover 

Kansai University Repository, Oct. 2010 

 

  

Table 5: Portfolio 8  

(stock code, weight, stock price at 03/96, number of lots (one lot is 1000 shares)). 

Stock No. 1 2 3 4 5 6 7 8 9 10 

Stock code 1301 1802 1812 4041 4042 4064 4092 4151 4501 4502 

Weight 0.01618 0.03672 0.023 0.03004 0.01916 0.0258 0.0214 0.0204 0.049 0.0167 

Stock price 809 918 1150 751 479 645 1070 1020 2450 1670 

No. of stocks 2 4 2 4 4 4 2 2 2 1 

Stock No. 11 12 13 14 15 16 17 18 19 20 

Stock code 4503 4901 5331 5479 5707 5901 6103 6310 6461 6473 

Weight 0.0238 0.0612 0.0105 0.0298 0.02139 0.0754 0.0121 0.01431 0.0232 0.0204 

Stock price 2380 3060 1050 596 713 3770 1210 477 580 1020 

No. of stocks 1 2 1 5 3 2 1 3 4 2 

Stock No. 21 22 23 24 25 26 27 28 29 30 

Stock code 6703 6758 6902 7011 7012 7202 7203 7231 7267 7951 

Weight 0.01644 0.0639 0.0216 0.01848 0.01638 0.01238 0.0236 0.02044 0.0233 0.0195 

Stock price 822 6390 2160 924 546 619 2360 511 2330 1950 

No. of stocks 2 1 1 2 3 2 1 4 1 1 

Stock No. 31 32 33 34 35 36 37 38 39   

Stock code 8252 8311 8315 8317 8402 8604 8802 9008 9202  

Weight 0.0233 0.0209 0.0226 0.0233 0.017 0.0235 0.0294 0.0314 0.0222  

Stock price 2330 2090 2260 2330 1700 2350 1470 628 1110  

No. of stocks 1 1 1 1 1 1 2 5 2   

 

Table 6: Execution cost (%). 

amount of transaction 

(million) 

1 2 … 210 211 212 … 219 … 225 

13011 1331   9101 9104 9105   9501   9681 

 10 ≤ c < 30 0.607  0.000  … 1.680  1.840  0.221  … 1.080  … 0.000  

 30  ≤ c <   50 1.817  0.000  … 2.014  1.840  0.221  … 2.120  … 0.000  

 50  ≤ c < 100 1.817  0.000  … 2.014  2.386  0.221  … 4.090  … 0.000  

 100  ≤ c <  200 1.817  0.000  … 2.014  2.598  0.221  … 4.090  … 0.000  

 200  ≤ c <  300 1.817  0.000  … 2.014  2.598  1.601  … 5.100  … 0.000  

 300  ≤ c <  400 1.817  0.000  … 3.954  3.104  1.601  … 6.870  … 0.000  

 400  ≤ c <  500 2.937  0.000  … 3.954  3.104  3.081  … 8.800  … 0.000  

 500  ≤ c <  600 4.377  0.000  … 3.954  3.104  4.321  … 10.020  … 0.000  

 600  ≤ c < 700 4.377  0.000  … 3.954  3.461  4.321  … 11.490  … 0.000  

 700  ≤ c < 800 6.337  0.000  … 3.954  3.461  4.321  … 12.920  … 0.000  

 800  ≤ c <  900 8.227  0.000  … 5.824  5.081  4.321  … 12.920  … 0.000  

 900  ≤ c <  1000 8.227  0.000  … 7.174  5.081  4.857  … 12.920  … 0.000  

 1000  ≤ c     8.227  0.000  … 7.174  5.081  5.620  … 12.920  … 0.000  

1means company code         
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Table 7: Discrete portfolios with execution costs and minimum trading units. 

Portfolio Max. rate Trans. cost Fixed time error Sum of  Periodic var. error (%) No. of  Relative difference1 (%) 

no.  θ (%) (%) (Objective value %) weights Before Ex-post stocks Maximum mean 

17 0.60  0.6000  0.4992  1.00000  0.3033  1.1474  62 17.74  10.74  

18 0.64  0.6400  0.3254  1.00001  0.2820  1.1293  63 17.10  10.31  

19 0.68  0.6800  0.2426  1.00000  0.2244  1.1027  67 16.33  9.65  

20 0.72  0.7200  0.1686  1.00000  0.1654  1.0796  71 15.55  8.97  

21 0.76  0.7600  0.1573  1.00000  0.1240  1.0470  75 14.66  8.31  

22 0.80  0.8000  0.1097  1.00000  0.1897  1.0921  69 15.78  9.18  

23 0.84  0.8400  0.0715  1.00000  0.1559  1.0965  73 15.13  8.67  

24 0.88  0.8800  0.0535  1.00000  0.1314  1.0759  75 14.28  8.15  

25 0.92  0.9200  0.0481  1.00000  0.1196  1.0539  81 13.50  7.57  

26 0.96  0.9600  0.0460  1.00001  0.1020  1.0249  92 12.10  6.59  

27 1.00  1.0000  0.0371  1.00000  0.1016  1.0095  98 11.62  6.22  

      
1
Relative difference between out-of-sample return and the index as a percentage of the initial investment 

The second experiment assumes that the total investment is 5000 Million Yen. The commission and 

execution cost are considered as part of the transaction cost. The commission in Table 3 is used. The ex-

ecution costs are generated randomly and are detailed in Table 6. One third of stocks (73 companies) are 

assumed to have execution costs such as market impact costs and market timing costs. Execution costs are 

increased by random numbers of interval [0.000, 2.000] and with 50% probability. Note that although 

these execution costs are discontinuous nonconvex, the CubeWalk can solve problems with the execution 

costs as the core solution engine of CubeWalk is the ISC that can effectively solve non-monotone non-

convex discrete optimization problems (see Nakagawa, James, Rego 2007).  Table 7 shows the perfor-

mance of Portfolios 17-27. Naturally the Fixed Time errors (optimal objective function values) of Portfo-

lios 17-27 are better than those of Portfolios 6-16 due to the larger portfolios a larger investment (as 

shown in Table 8) can provide. The in-sample performances of Portfolios 17-27 are also more stable than 

those of Portfolios 6-16. 
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Figure 9: Portfolio 18. 

 

Figure 10: Portfolio 18. 

2500 

3000 

3500 

4000 

4500 

5000 

5500 

M

i

l

l

i

o

n

Y

e

n

Discrete Portfolios and NIKKEI225（5 years）

portfolio 21 portfolio 22

portfolio 23 portfolio 24

portfolio 25 portfolio 26

portfolio 27 NK225

Pseudo Traj.

Purchase time



24 
Author: Y. Nakagawa, R. J.W. James, C. Rego, F. Glover 

Kansai University Repository, Oct. 2010 

 

  

 

 

3000 

3500 

4000 

4500 

5000 

5500 

Price of Obtained Portfolio and NIKKEI225（5 years）
portfolio 18 NIKKEI225 Pseudo Traj.

the  purchase month of portfolio

Million Yen
A

-15 

-10 

-5 

0 

5 

10 

15 

20 

Monthly return rate of Obtained Portfolio and NIKKEI225（5 years）

portfolio 18 NIKKEI225 Difference

%
B



25 
Author: Y. Nakagawa, R. J.W. James, C. Rego, F. Glover 

Kansai University Repository, Oct. 2010 

 

  

Table 8: Portfolio 18 (stock price at 03/96). 

 

5.  Conclusions 

In this paper non-convex quadratic programming problems have been used to solve two different 

types of portfolio optimization problems.  Previously index tracking optimization problems were consi-

dered to be quite difficult to solve when there are non-convex transaction costs and lot size constraints for 

variables, since the problem is a discrete non-convex quadratic optimization problem.  However using the 

techniques proposed in this paper we have shown that it is possible to solve practical problems of this 

type efficiently.   How effective portfolios generated by this method are in terms of their out-of-sample 

returns is a topic for future research Other kinds of non-convex programming problems will be able to be 

Stock No. 1 2 3 4 5 6 7 8 9 10

Stock code 1301 1802 1803 2001 2108 2501 2502 2531 3110 3403
Weight 0.005987 0.029743 0.029718 0.007258 0.008832 0.02495 0.024108 0.008658 0.008614 0.011214

Stock price 809 918 1170 648 640 998 1230 1170 365 630
No. of stocks 37 162 127 56 69 125 98 37 118 89
Stock No. 11 12 13 14 15 16 17 18 19 20

Stock code 3404 3863 3865 4041 4042 4063 4064 4092 4208 4401
Weight 0.007396 0.014955 0.00416 0.015471 0.029985 0.017304 0.010578 0.00963 0.006293 0.021956

Stock price 451 763 1040 751 479 2060 645 1070 414 963
No. of stocks 82 98 20 103 313 42 82 45 76 114
Stock No. 21 22 23 24 25 26 27 28 29 30

Stock code 4501 4502 4503 4901 5301 5331 5351 5405 5479 5707
Weight 0.02548 0.009018 0.039508 0.040392 0.00799 0.01113 0.010384 0.008911 0.005483 0.005989

Stock price 2450 1670 2380 3060 579 1050 1180 335 596 713
No. of stocks 52 27 83 66 69 53 44 133 46 42
Stock No. 31 32 33 34 35 36 37 38 39 40

Stock code 5721 5901 6103 6461 6473 6474 6479 6503 6758 6773
Weight 0.009108 0.046748 0.012342 0.014384 0.020604 0.008772 0.008235 0.019582 0.03834 0.01452

Stock price 660 3770 1210 580 1020 510 915 796 6390 2200
No. of stocks 69 62 51 124 101 86 45 123 30 33
Stock No. 41 42 43 44 45 46 47 48 49 50

Stock code 6841 6902 7011 7012 7202 7203 7231 7267 7751 7912
Weight 0.012544 0.024192 0.001848 0.011575 0.011885 0.02124 0.020031 0.027494 0.02652 0.01287

Stock price 1120 2160 924 546 619 2360 511 2330 2040 1950
No. of stocks 56 56 10 106 96 45 196 59 65 33
Stock No. 51 52 53 54 55 56 57 58 59 60

Stock code 7951 8252 8311 8315 8317 8318 8320 8322 8604 8802
Weight 0.01989 0.013048 0.015466 0.010848 0.011184 0.009936 0.01849 0.004096 0.0141 0.007938

Stock price 1950 2330 2090 2260 2330 2160 2150 1280 2350 1470
No. of stocks 51 28 37 24 24 23 43 16 30 27
Stock No. 61 62 63

Stock code 9008 9009 9681
Weight 0.024115 0.008568 0.0184

Stock price 628 1190 2000
No. of stocks 192 36 46



26 
Author: Y. Nakagawa, R. J.W. James, C. Rego, F. Glover 

Kansai University Repository, Oct. 2010 

 

  

solved in the future using techniques similar to this. This paper determined the cube size empirically, 

hence a technique for determining the size systematically is a topic for future research. 
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