研究報告書 「関西大学におけるポートフォリオを主軸とした教育のパラダイムシフト」

<table>
<thead>
<tr>
<th>著者</th>
<th>山本 敏幸・岩崎 千晶・牧野 由香里・田邊 則彦・江守 恒明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ページ</td>
<td>未定</td>
</tr>
<tr>
<td>発行年</td>
<td>未定</td>
</tr>
<tr>
<td>権利</td>
<td>未定</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10112/10299</td>
</tr>
</tbody>
</table>

(c)2011 Springer-Verlag Berlin Heidelberg, Edutainment Technologies. Educational Games...
第 III 部

e ポートフォリオにおけるアセスメント手法について

タイトル ・・ページ番号

・ e-Portfolio Assessment for the PBL Course: Analytics of Reflection as the Evidence of Active Learning ・・・・・・・・・・・・・・・・・・・・・・・・ 226
研究報告書（教育研究高度化促進費）
e-Portfolio Assessment for the PBL Course: Analytics of Reflection as the Evidence of Active Learning

Tosh Yamamoto & Chiaki Iwasaki, Kansai University
Make Okumuki, Kobe Shuntwa Women’s University
Masahiko Funakawa & Minoru Nakazawa, Kanazawa Inst. of Tech.

What is e-Portfolio?

- No culture to make use of portfolio system in education in Asia
- Portfolios turned in by the medical degree candidates.
- Evaluation of Portfolios: two examiners read Portfolios individually.
- Prep-meeting by all examiners’ agreement formation for standardizing the evaluation measures.

e-Portfolio

- Sources: Portfolio System by Emi Japan

What is e-Portfolio?

- e-Portfolio is characterized by:
 - Constructivism in Education
 - Learning Effectiveness rather than Teaching Effectiveness
 - Active Learning by the Problem Identifying/Solving Strategies
 - Collaborative Group Learning (Team-Based Learning)
 - Learning Outcome from Team Work and Leadership
 - Social Aspects in Classroom
 - Discussion -> Sharing Information -> Identifying the Problem -> Decision-Making for the Next Step (Project Design) -> Project Management -> Reflection (i.e., Plan-Do-Check-Action Cycle)
 - Course Offered by Clear Goals, Objectives, and Planning in terms of Syllabus
 - Clearly Stated Institutional Mission and Goal Statements

Types and Purposes:

- Types of e-Portfolio
e-Portfolio: 3 Types:

1. Student e-Portfolio
 - Show cases for proofs of achievements
 - Purpose: career development, course accomplishment
 - Collection of artifacts
 - Place to share representations, reflections, improvement processes.

2. Faculty Development e-Portfolio
 - Show cases for proofs of academic achievements by professors
 - Teaching strategies to be shared with other colleagues
 - Purpose: professional development as educators

3. Institutional e-Portfolio
 - Collections of student e-Portfolio and faculty development e-Portfolio
 - Evidence for learning and accreditation

What we focus on here

- We choose the Learning e-Portfolio
- And why?

Challenges must be made!

Higher Ed is NOT meeting the society's needs for college graduates.

- Problem Solving Skill (Data Collection, Analysis, Problem Solving)
- Continuous Learning (Intellectual Curiosity & Active Learning)
- Independence (Exercise independence and display leadership in project)
- Teamwork (Collaborative attitudes & perform one's duties and responsibility in project)
- Self-Management (Set goals, plan well, and work accordingly)
- Problem Solving and Solving (Analyzing the situation to identify the problem to be solved)
- Logical Thinking

Concepts of Learning Portfolio

- Learner as a pilot
- Prof as a copilot

Traditional vs. e-Portfolio Way

Traditional Education
- Goal (set by the professor)
- Teaching as a pilot / instructor of the new task
- Teacher is the expert

e-Portfolio Way
- Goal (set by the learner)
- Teaching as a pilot / instructor of the new task
- Learner is the expert
Traditional vs. e-Portfolio Way

- Evaluation vs. Assessment

 - Evaluation: Accomplished Results are the target
 - Assessment: Academic Advising and Consultation in the process of learning (= e-Portfolio Way)

Traditional vs. e-Portfolio Way

<table>
<thead>
<tr>
<th>Traditional</th>
<th>e-Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>For students: X-many credits are required to graduate (e.g. 130 credits)</td>
<td>For students: Students set their own goal of learning</td>
</tr>
<tr>
<td>For faculty: Summative assessment (goals reports)</td>
<td>Teacher as copilot of student’s learning</td>
</tr>
<tr>
<td>For hiring companies: chance to know applicants through resumes. Requires personnel specialists to hire high-caliber students</td>
<td>Assessment (e-Portfolio Way)</td>
</tr>
</tbody>
</table>

- We will discuss “assessment”.

- Crucial Features of e-Portfolio (1/2)
 - Foundation: Kolb’s Experimental Learning Model & H. Gardner’s Multiple Intelligence.
 - Each student sets up their own learning goals based on their career background.
 - Each student maps their own curriculum through advisory sessions with the mentor professor.
 - A mentor professor works together with the student to confirm that the initial goals are reached.
 - Each student’s learning experiences: reported in reports artifacts, reflection journals throughout the courses on e-Portfolio

- Crucial Features of e-Portfolio (2/2)
 - Entire course activities: Assessed from learning processes throughout the courses from various angles
 - Adopted Model for all activities: Improvement Cycle Model (Plan-Do-Check-Action Model)
 - Final Evaluation: Quality Evaluation of how much each student achieved in each course
 - Quality Evaluation of how much knowledge and skills each student gained through the learning process and reflection
 - Entire components of e-Portfolio are assessed
e-Portfolio offers students:
- Opportunity to set up the customized academic goals to meet professional needs.
- Evaluation as well as feedback to all course work.
- Evaluation as well as feedback throughout the curriculum until completion of the program.
- Academic Advising by the mentor professor/teaching staff.
- Visualization of the student's achievements.
- Visualization of how much the student has achieved toward the educational goals.

Assess what?
- MI eight categories.
- Sources for the assessment.

Sources for assessment:
- Students' reflections of learning activities in the course of learning.
- The mirror of the curious mind.
- Using probe questions to extract what students accomplished/learned/mastered/... in the course.
- Competency based assessment – rubrics.
- MGTA.
- NMF.

Qualitative, rather than Quantitative
- Competency based assessment – rubrics.
- Visualizing accomplishments in learning (components).

Competency-based assessment – rubrics.

Where am I, as a learner, going? How do I, as a learner, know when I get there? How do I, as a learner, get there? (Robert E. Mager)

Professors or teachers need to evaluate and visualize students' learning outcomes. (still traditional in a way).
Qualitative, rather than Quantitative

- It is important to clarify the correlation of objectives, activities and assessment.
- Professors or teachers need to select the optimal way to assess the learner's activities.

Competency Matrix

Rubric-Based Evaluation

End of Rubrics

How to Assess Students' Growth and Visualize the Learning Effect in M-GTA

- M-GTA (Modified Grounded Theory Approach)
 - Originally proposed by Barney Glaser and Anselm Strauss, which is the way of qualitative analysis grounded-on-data.
 - Useful for the qualitative assessment for PBL of the social fundamental skills targeting the students of the liberal arts majors.
 - Based on the theory that the major conceptual components are buried in the written data and that such conceptual components are minable through a certain procedure.
Qualitative assessment for PBL in M-GTA

PBL (Field Study at Kobe-Shirasu Women's University)
Students in groups work collaboratively with the people in local communities or companies in order to solve problems that they face daily.

Assessing Students’ Growth and the Learning Effect in M-GTA
Self-actualization and self-identification / Desire to interact with role models as adult
Problem identifying/solving skills, meta cognition skill, team work skill, collaborative communication skill

Procedure of analysis in M-GTA
(1) Analyzing the written data in the e-Portfolio and the interview results.
(2) Creating conceptual categories by considering and interpreting meanings of data, and linking categories of similar concepts which are closely related.
(3) Analyzing relevance (correlation) among all conceptual components.
(4) Mapping the all conceptual components on a sheet for the holistic view.
(5) Visualizing the learning process and effect of PBL.

Procedure of analysis in M-GTA
(1) Analyze the written data in the e-Portfolio and the survey by interviewing.
(2) Creating concepts by considering and interpreting meanings of data, and categories of several concepts that are closely linked.

Procedure of analysis in M-GTA
(3) Analyzing relevance among conceptual components.
(4) Mapping the all conceptual components on a sheet for the holistic view.
(5) Visualizing the Process and effectiveness of PBL.

Procedure of analysis in M-GTA
(3) Analyzing relevance among conceptual components.
(4) Mapping the all conceptual components on a sheet for the holistic view.
(5) Visualizing the Process and effectiveness of PBL.

Procedure of analysis in M-GTA
(1) Analyzing the written data in the e-Portfolio and the interview results.
(2) Creating conceptual categories by considering and interpreting meanings of data, and linking categories of similar concepts which are closely related.
(3) Analyzing relevance (correlation) among all conceptual components.
(4) Mapping the all conceptual components on a sheet for the holistic view.
(5) Visualizing the learning process and effect of PBL.
Summary: Learning Outcome

In the Field Study at Kobe-Shinwa University using e-Portfolio
Our analysis proved that the student's motivation is increased by realizing
- the status of the university student being different from the full-fledged members in the society, i.e., self-actualization and self-identification
- the desire to interact with them, i.e., finding a role model as an adult

1. Students develop their meta-cognition and self-actualization skills effectively - the fundamental survival skills as an adult.
2. The course e-Portfolio for academic fundamental skills and the career e-Portfolio, which are independently operated on campus, can be united with the newly educational goal or the school-wide mission and its vision.

End of M-GTA.

Qualitative, rather than Quantitative

- Non-negative Matrix Factorization (NMF) A method of clustering: i.e., Principal Component Analysis for Qualitative Analysis
- Basic idea: The choice of words in writing crucially vary in the course of learning. Peculiar characteristics may appear when the learner shift to a higher strata of learning.

Example
Data set taken from 20 Newsgroups threads
Qualitative, rather than Quantitative

- Non-negative Matrix Factorization (NMF) 非負値行列因子分解
- A method of clustering: i.e., Principal Component Analysis for Qualitative Analysis
- Take any data as matrix, students' reflection report
- Concept: what is not in mind will not appear in words in reflection

\[\text{e.g. Bag-of-words in reflection} \]
\[
\begin{array}{l}
\text{MI items list for Gp. A} \\
\text{MI items list for Gp B} \\
\text{MI items list for Gp C}
\end{array}
\]

To Sum up...

- Learner-Centered Learning and Assessment Strategies
- E-Portfolio Way
- Constructivism
- Assessment Strategies
 - Competency-Based
 - NMF
 - M-GTA

Detailed Discussion for the selected options for assessment will be in one of the workshop sessions at ISGC 2015 (March) in Taipei.

Thank you for your participation!

e-Portfolio Assessment for the PBL Course: Analytics of Reflection as the Evidence of Active Learning

Tosh, Yamamoto & Chika Iwasaki, Kansai University
Maki Okunuki, Kobe Shonai Women's University
Masahiko Funakawa & Minoru Nakazawa, Kanazawa Inst. of Tech
Assessment Methodology for Big Data: Learners’ Reflection Reports as corpus for Non-Negative Matrix Factorization (NMF)

Tosh Yamamoto & Chiaki Iwasaki, Kansai University
Maki Okumuki, Kobe Shonwa Women’s University
Masahiko Funakawa & Minoru Nakazawa, Kanazawa Inst. of Tech

Assessment in e-Portfolio

- We are discussing "assessment".

- Assess what?
 - All eight categories.
- Sources for the assessment

- Assessment (e-Portfolio Way)
 - Students set their own goal of learning
 - Teacher as copilot of student’s learning

Visual-Spatial - think in terms of physical space, as do architects and sailors. Very aware of their environments. They like to draw, do puzzles, read maps, daydream. They can be taught through drawings, verbal and physical imagery. Tools include models, graphics, charts, photographs, drawings, 3-D modeling, video, videoconferencing, television, multimedia, texts with pictures/charts/graphics.

Bodily-kinesthetic - use the body effectively, like a dancer or a surgeon. Keen sense of body awareness. They like movement, making things, touching. They communicate well through body language and be taught through physical activity, hands-on learning, acting out, role playing. Tools include equipment and real objects. Musical - show sensitivity to rhythm and sound. They love music, but they are also sensitive to sounds in their environments. They may study better with music in the background. They can be taught by turning lessons into lyrics, speaking rhythmically, tapping out time. Tools include musical instruments, music, radio, stereo, CD-ROM, multimedia.
Interpersonal - understanding, interacting with others. These students learn through interaction. They have many friends, empathy for others, street smarts. They can be taught through group activities, seminars, dialogues. Tools include the telephone, audio conferencing, time and attention from the instructor, video conferencing, writing, computer conferencing, E-mail. Intrapersonal - understanding one’s own interests, goals. These learners tend to shy away from others. They’re in tune with their inner feelings; they have wisdom, intuition and motivation, as well as a strong will, confidence and opinions. They can be taught through independent study and introspection. Tools include books, creative materials, diaries, privacy and time. They are the most independent of the learners. Linguistic - using words effectively. These learners have highly developed auditory skills and often think in words. They like reading, playing word games, making up poetry or stories. They can be taught by encouraging them to say and see words, read books together. Tools include computers, games, multimedia, books, tape recorders, and lecture.

Logical-Mathematical - reasoning, calculating. Think conceptually, abstractly and are able to see and explore patterns and relationships. They like to experiment, solve puzzles, ask cosmic questions. They can be taught through logic games, investigations, mysteries. They need to learn and form concepts before they can deal with details.

Qualitative, rather than Quantitative
- Non-negative Matrix Factorization (NMF)
 - Basic idea: The choice of words in writing crucially vary in the course of learning. Peculiar characteristics may appear when the learner shift to a higher strata of learning.

Example
- Data set taken from 20 Newsgroups threads

Assessment in e-Portfolio
http://www.tecweb.org/styles/gardner.html

Sources for assessment:
- Students’ reflections of learning activities in the course of learning
- The mirror of the curious mind
- Using probe questions to extract what students accomplished/learned/mastered...
- Competency based assessment – rubrics
- MGTA
- NMF

To Wrap up...
- Learner-Centered Learning and Assessment Strategies
- E-Portfolio Way
- PBL thru TBL: Constructivism
- Assessment Strategies
 - Competency-Based
 - NMF
 - MGTA

Qualitative, rather than Quantitative

- Non-negative Matrix Factorization (NMF) 非負値行列因子分解
 - A method of clustering: i.e., Principal Component Analysis for Qualitative Analysis
 - Take any data as matrix: students’ reflection reports (free writing)
 - Concept: what is not in mind will not appear in words in reflection
 - e.g. Bag-of-words in reflection

Example
- Data set taken from 20 Newsgroups threads
(4) Session 4: Assessment Methodology for Big Data: Learners’ Reflection Reports as corpus for Non-Negative Matrix Factorization (NMF)

Tosh Yamamoto & Chiaki Iwasaki, Kansai University
Maki Okunuki, Kobe Shunta Women’s University
Masahiko Funakawa & Minoru Nakazawa, Kanazawa Inst. of Tech

Thank you for your participation!

Path to Scholarship, Career, College, & Life-Long Learning Planning

Qualitative, rather than Quantitative

M-GTA

How to Assess Students’ Growth and Visualize the Learning Effect in M-GTA

M-GTA (Modified Grounded Theory Approach)

- originally proposed by Barney Glaser and Anselm Strauss, which is the way of qualitative analysis grounded-on-data.
- useful for the qualitative assessment for PBL of the social fundamental skills targeting the students of the liberal arts majors.
- based on the theory that the major conceptual components are buried in the written data and that such conceptual components are minable through a certain procedure.
Qualitative assessment for PBL in M-GTA

PBL (Field Study at Kobe-Shinwa Women's University)
Students in groups work collaboratively with the people in local communities or companies in order to solve problems that they face daily. Revitalizing local areas, development new products with companies

Assessing Students' Growth and the Learning Effect in M-GTA
Self-actualization and self-identification /Desire to interact with role models
Problem identifying/solving skills, meta cognition skill, team work skill, collaborative communication skill

Procedure of analysis in M-GTA
(1) Analyzing the written data in the e-Portfolio and the interview results.
(2) Creating conceptual categories by considering and interpreting meanings of data, and linking categories of similar concepts which are closely related.
(3) Analyzing relevance (correlation) among all conceptual components.
(4) Mapping the all conceptual components on a sheet for the holistic view.
(5) Visualizing the learning process and effect of PBL.
研究報告書（教育研究高度化促進費）